
Context in Programming: An Investigation of How
Programmers Create Context

Souti Chattopadhyay
chattops@oregonstate.edu

Oregon State University

Nicholas Nelson
nelsonni@oregonstate.edu

Oregon State University

Thien Nam
namt@oregonstate.edu

Oregon State University

McKenzie Calvert
calvertm@oregonstate.edu

Oregon State University

Anita Sarma
anita.sarma@oregonstate.edu

Oregon State University

ABSTRACT

A programming context can be defined as all the relevant informa-

tion that a developer needs to complete a task. Context comprises

information from different sources and programmers interpret the

same information differently based on their programming goal. In

fact, the same artifact may create a different context when revisited.

Context, therefore, by its very nature is a “slippery notion.”

To understand how people create context we observed six pro-

grammers engaged in exploratory programming and performed a

qualitative analysis of their activities. We observe that the interac-

tions with artifacts and a mapping of meaning from those artifacts

for a programming activity determines how one creates context.

KEYWORDS

Programming context, programmer behavior, qualitative studies

ACM Reference format:

Souti Chattopadhyay, Nicholas Nelson, Thien Nam, McKenzie Calvert,

and Anita Sarma. 2018. Context in Programming: An Investigation of How

Programmers Create Context. In Proceedings of 11th International Workshop

on Cooperative and Human Aspects of Software Engineering, Gothenburg,

Sweden, May 27, 2018 (CHASE’18), 4 pages.

https://doi.org/10.475/123_4

1 INTRODUCTION

Programming, in particular the act of coding, does not occur in

isolation. It involves ideating and exploring different solutions and

using different types of information (in the codebase and from on-

line/external resources) to complete a task. These relevant pieces of

information, along with the programmer’s prior knowledge, creates

a context that the programmer uses to solve the task.

In software engineering, ‘context’ has been described as the

perspective gained from all relevant information obtained from

these different sources. Although we intuitively understand context;

it is a “slippery notion” [5]—hard to formally describe and define.

It is dynamic in nature, morphing with every action and evolving

along with changing goals.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on thefi rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CHASE’18, May 27, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

Context has been researched in both software engineering and

ubiquitous computing, resulting in two disparate views of context—

representational and interactional context [5].

The representational view describes context as delineable and

stable [1, 12, 15]. To operationalize this view, researchers have

attempted to encode context through artifacts, tasks, and environ-

mental factors. For example, Gasparic et al. [7] discuss how context

can be modeled by environmental factors like who is working,

what is the environment, and which artifacts are involved. How-

ever, focusing only on how context is represented leaves gaps in

our understanding of how context is created, how it is affected by

developers’ goals, and how it changes with evolving goals.

The interactional view defines context as a relational property

that exists between objects or activities; and one cannot be viewed

disjointed from the other [5]. Because of this interconnected rela-

tionship, contextual factors must be defined dynamically for each

activity, and the sequence in which they occur is important.

In this paper, we present a study of six programmers and obser-

vations about how programmers create context by interacting with

artifacts. Our qualitative analysis provides evidence that context

crosscuts activities and artifacts, calling for the need of merging

the representational and interactional views of context.

2 RELATEDWORK

Context, while an intuitive concept, is very hard to define due to

its highly dynamic nature. Schilit and Theimer [16] defined context

in the “context-aware” computing domain as being various factors

of a user; such as location, time, and identity.

Brown [3] proposed a definition which included the character-

istics of the user, the environment, and the application. However,

these definitions are inclined towards static models of the factors

that affect context, and assume very little interplay between them.

Models like Mylar [10] and Hipikat [4] capture various factors

like the nature of programming tasks, artifacts, and the development

environment. These models attempt to identify the context that

directly or indirectly contributes to the programmers ability to

construct meaningful software.

This kind of representational perspective of context is accurate

for modeling software systems where the state of the program is

the primary focus. However, these models can only answer “what

can be used to represent context?” rather than “what is context?”

Pascoe [12] and Abowd et al. [1] propose perspectives that focus

on the interactional nature of context—where context is a subset of

33

2018 ACM/IEEE 11th International Workshop on Cooperative and Human Aspects of Software Engineering

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:00:59 UTC from IEEE Xplore. Restrictions apply.

CHASE’18, May 27, 2018, Gothenburg, Sweden S. Chattopadhyay et al.

the physical and conceptual states of the user—the user’s emotions,

attention, and informational states.

However, interactional context is difficult to operationalize due

to the transitory nature and focus on users. Although Spyglass [17]

was developedwith this view of context to create a recommendation

system; a model that accounts for the interactions is still missing.

3 METHODOLOGY

We conducted a lab study to observe six graduate students with pro-

fessional programming experience performing a programming task.

Their details are presented in Table 1. We provided participants

P1-P5 with a prompt requiring planning, designing, and developing

software to simulate a traffic intersection. This prompt had pre-

viously been used in other studies [11]. This prompt was easy to

understand but nontrivial to implement, allowing us to observe

participants’ use of context.

We additionally observed participant P6 working on a real-world

problem involving development of his own IDE.We do so to contrast

the results of participants who were working on a given prompt,

from those that occur when a programmer is working on their on

own programming task.

Table 1: Participant Demographics

Participant Gender Programming

Languagei
Programming

Experienceii

P1 M Scala >10 yrs.

P2 M C/C++ 7 yrs.

P3 F Python 5 yrs.

P4 F Java 7 yrs.

P5 F Python >10 yrs.

P6 M JavaScript >10 yrs.

i Selected by participant. ii Across all programming languages.

Our participants provided a brief, but diverse subset of program-

ming styles; P1 adhered to the Test-Driven Development (TDD)

model, and P6 displayed a strong affinity for tinkering [2].

We time-boxed the study to one-hour, to prevent participant

fatigue. Participants used their preferred development tools and

programming language. They were also provided blank paper and

given the option to think-aloud. P1 chose to think aloud, which we

used to validate our interpretations of P1’s actions. We collected a

diverse dataset: audio, screen recording, external notes.

To analyze the data, thefi rst author unitized the screen record-

ings and audio transcripts into continuous time segments. Each

unit contains a logically consistent group of related interactions

that represent a small part of their programming task.

For each of these units, we identified the programming activity,

the artifacts used, and their frequency. Table 2 lists the 11 pro-

gramming activities we use in our analysis. The codeset builds

on [18], with slight modifications tofi t our task prompt: we changed

READING QUESTIONS to READING TASK PROMPT (A4), and added

UPDATING DOCUMENTS (A1).

Using this codeset, thefi rst and the third authors obtained an

Inter-Rater Reliability (IRR) score of 97.14% and thefi rst and the

fourth authors obtained an IRR score of 92% when coding random

Figure 1: Time sequence of Activities and Artifacts from P1

Figure 2: External artifacts created by P1 during study; A shows

a model of the interactions within a traffic intersection, B repre-

sents a potential layout for roads and intersections on a grid.

segments from the selected participants dataset (which constituted

~14% of the raw data). The remaining 86% of the data was coded

individually by the same authors.

4 STUDY RESULTS

Here we present our observations of how participants’ interact with

the artifacts during specific activities. Our focus was to develop

an understanding of how the context building process occurs, and

gain insights into which factors play a role in shaping context.

We observe the types of artifacts that participants refer to dur-

ing different programming activities. The participants interacted

with 6 different types of artifacts: source codefiles , documents (task

prompt), IDE tools (e.g.: New Class dialog box, terminal), web re-

sources (e.g. search results, Q&A pages), externalized artifacts (e.g.

paper diagrams), and other (e.g. calculators).

For each participant, we refer to source codefi les in the format

C1,C2, etc., the prompt document is D1, IDE tools follow T1,T2, etc.,

web resources follow W1,W2, etc., and external artifacts as EX1. The

numbering of these tags represents the sequential order in which

participants encountered or interacted with them.

4.1 Artifacts span heterogeneous medium

During our study, participants not only accessed code artifacts,

but also tools within the IDE, online resources, and external docu-

ments to help them in their programming task. Here we discuss the

different types of artifacts and the frequency in which they’re used.

Participants, as can be expected, accessed the code artifacts most

frequently when involved in their coding activity (A0). During

their hour-long session, P1 accessed three source codefi les 87 times

and P6 accessed four source codefi les 147 times.

34

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:00:59 UTC from IEEE Xplore. Restrictions apply.

Context in Programming: An Investigation of How Programmers Create Context CHASE’18, May 27, 2018, Gothenburg, Sweden

Table 2: Programmer Activities Codeset

Code Programming Activity Activity Description

A0 CODING The subject interacts with source code in the editor.

A1 UPDATING DOCUMENTS The subject altered, or updated, the task prompt document.

A2 NAVIGATION The subject navigates tofi nd thefi le or pages they need.

A3 READING TASK PROMPT The subject read and inspected the task prompt document.

A4 SEARCHING The subject uses search to locate resources to support his problem solving.

A5 READING SEARCH RESULTS The subject reads the search results to decide which results to click.

A6 PROCESSING SEARCH RESULTS The subject decides how to deal with the search results.

A7 VIEWING WEB RESOURCES The subject views online programming support resources.

A8 DEBUGGING The subjects tries tofi x the problem in the code.

A9 RUN (incl. test running) The subject uses tools to run the program and view the results.

A10 IDLE The subject does nothing for a specific period (≥ 3 seconds)

The next most frequently accessed artifacts were on-line re-

sources. Participants often used these resources to learn how to use

a feature or recall implementation details. For example, P6 accessed

seven web resources 91 times—he used blog posts to learn how to

correctly use the “draggable” feature.

We found that participants also frequently engaged in creating

external artifacts (e.g., notes, updating the traffic prompt, and cre-

ating diagrams). Figure 1 shows a plot of P1’s activities and the ar-

tifacts he interacts with for an 8-minute segment of his session. We

found that P1 (based on his think aloud data) was ideating about pos-

sible solutions. If we simply analyze his on-line interactions it shows

that he was interacting with the codefile intersection.scala

(C1) while his programming activity switched between coding

(A0) and being idle (A1). However, this belies the fact that he was

ideating different solutions during this period; he was modeling the

traffic movement at the intersection (Fig 2.A) and the data model

to represent the intersections (Fig 2.B).

Our observations indicate that when defining context and how

it is built, we need to also consider artifacts that are outside the

IDE. Not doing so [7, 10], leaves gaps in our understanding.

4.2 Programming activity guides interaction

with artifacts

The programming activity guided the kinds of artifacts, andmedium,

that were accessed and also how participants interacted with them.

For example, from Figure 3.A, when interacting with the code

artifact cards.js (C1), was involved in two separate activities

(coding (A0) and searching (A4). To update a feature, P6 produced

new code in cards.js (C1), but then realized that he needed

to update all the other parts of the program that were affected.

He searched for the particular term within the code and switched

back to coding as necessary. While both of these activities, coding

(A0) and searching (A4), required P6 to interact with the code arti-

fact C1, the type of interaction varied. When coding (A0) between

00:15:57–00:16:29, P6 primarily typed in short bursts that were

interspersed with scrolling interactions. Whereas, during subse-

quent searching (A4), P6 mostly scrolled following the highlighted

instances of the term he searched and intermittently copied text.

The interactions with artifacts provides the information which

guides an activity forward, sometimes causing a switch to different

activity. In Figure 3.B, P6 looked through a stackoverflow.com

(SO) page (W3). He is viewing web resources (A7), scrolling and

intermittently pausing to read the answers on the page until he

finds a probable answer. Then he switches to coding (A0), and for

the next two minutes, continued to switch between the activities

coding (A0) and viewing web resources (A7). Toward the end of

this sequence of activities, P6 scrolled quickly to a desired section

and copied the text before returning to code.

While the above examples are intuitive and simple, they shed

light on how activity and interactions with artifact are closely tied

together. They provide evidence to the notion that not only does

context arise from the activity, but the programming activity and

the goal behind it guide the specific type and amount of information

obtained from the artifact.

4.3 Interaction includes Reflection

Participants evaluated the information within the artifacts that they

accessed. Typically these evaluations coincided with prolonged

interactions (e.g, long periods of scrolling or highlighting parts

of an artifact). After such evaluation periods participants started

to code. If participants found errors then they reflected on the

information that they extracted from the artifacts.

We observed such cycles of Evaluation-Reflection in all sessions.

Figure 3.B presents such a cycle for P6. He read through multiple

answers on the SO page (W3), evaluating each one (marked by

‘Evaluation’ arrow). After selecting the most appropriate (perceived)

solution, he started to code (A0) and run the code (A9); Following

these steps multiple times as well as revisiting the selected answer

on the page (W3). When the selected solution proved to be incorrect,

he went back to the same (W3) page and spent 30 seconds (twice

the time of previous visits) reflecting on the solutions and their

appropriateness.

We saw a similar loop for P1; He sought help when implement-

ing a feature (case class) as seen by his comment: “I don’t know how

to do this”. Thus, he read the scala documentation, evaluating the

information on the page. After scrolling through the page multiple

times he reflected that the solution would be too difficult and im-

plementing it was not worth the effort for the task at hand: “How

do I do this smartly? . . .fine, I’ll just do it with strings”.

5 DISCUSSION AND FUTURE DIRECTIONS

Limitations: Like many other research papers based on formative

analysis, our study has limitations. First, this was an exploratory

35

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:00:59 UTC from IEEE Xplore. Restrictions apply.

CHASE’18, May 27, 2018, Gothenburg, Sweden S. Chattopadhyay et al.

Figure 3: Time sequence of Activities and Artifacts from P6 during study; A shows a sequence of CODING (A0) and SEARCHING (A4) across

the same C1 source codefi le, B represents a cycle of evaluation, action, and reflection.

study that only included six participants recruited through conve-

nience sampling. All participants had at leastfi ve years of program-

ming experience, with three participants having three or more years

of professional programming experience. Second, we collected dif-

ferent types of data across the participants– screen sharing was

captured for all participants, but P4 included video of the partic-

ipants face during the study and P1 provided think-aloud audio.

Since our primary goal was to observe the interactions between

participants and the artifacts they utilized during programming,

screen capture data was the primary focus during our studies.

Future Directions: Our initial analysis reveals two future di-

rections that we plan to pursue.

5.0.1 Using Information Foraging Theory to inform context cre-

ation. Context has been largely defined as all ‘relevant information’

that an individual needs to complete a task. We believe that In-

formation Foraging Theory (IFT) constructs [6, 14] can help us

model how programmersfi nd information in an artifact and decide

whether it is relevant as they carry out their tasks. IFT explains

that the consumption of information is similar to how animals hunt

for food—following scent of their prey and choosing more valuable

prey through a cost-benefit analysis. We observed that participants

engaged in such evaluation of artifacts and the information con-

tained within when building context.

IFT has been applied in the programming domain to study how

varying goals [13] affect the perceived value of information and

how the (perceived) cost of ‘consuming’ information varies across

different types of artifacts (e.g., web site vs. Q&A forum) [9]. We

plan to build on these works to explore how IFT can help model

programmers context building behavior.

5.0.2 Mapping and Memory Modeling. Our observations show

that participants accessed artifacts and reflected on the informa-

tion contained in them. Past work has alluded to how individuals

perform “sensemaking” of information contained withing artifacts

tofi t their (task) goal [8], but the process by which individuals map

the information theyfi nd to the problem or solution space has not

been modeled. Moreover, once a context has been built parts of the

context (information) can be useful and recalled from memory for

another (programming) task. Further studies are needed to under-

stand how individuals recall snippets of context from other tasks

to aid their current one or how temporality of actions may cause

decay in memory and the ability to recall context.

REFERENCES
[1] Gregory D Abowd, Anind K Dey, Peter J Brown, Nigel Davies, Mark Smith, and

Pete Steggles. 1999. Towards a better understanding of context and context-
awareness. In International Symposium on Handheld and Ubiquitous Computing.
Springer, 304–307.

[2] Laura Beckwith, Cory Kissinger, Margaret Burnett, Susan Wiedenbeck, Joseph
Lawrance, Alan Blackwell, and Curtis Cook. 2006. Tinkering and Gender in
End-user Programmers’ Debugging. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’06). ACM, New York, NY, USA,
231–240. https://doi.org/10.1145/1124772.1124808

[3] Peter J Brown. 1995. The stick-e document: a framework for creating context-
aware applications. Electronic Publishing-Chichester- 8 (1995), 259–272.

[4] DavorČubrani ć and Gail C Murphy. 2003. Hipikat: Recommending pertinent
software development artifacts. In Proceedings of the 25th international Conference
on Software Engineering. IEEE Computer Society, 408–418.

[5] Paul Dourish. 2004. What we talk about when we talk about context. Personal
and ubiquitous computing 8, 1 (2004), 19–30.

[6] Scott D Fleming, Chris Scaffidi, David Piorkowski, Margaret Burnett, Rachel
Bellamy, Joseph Lawrance, and Irwin Kwan. 2013. An information foraging
theory perspective on tools for debugging, refactoring, and reuse tasks. ACM
Transactions on Software Engineering and Methodology (TOSEM) 22, 2 (2013), 14.

[7] Marko Gasparic, Gail C Murphy, and Francesco Ricci. 2017. A context model for
IDE-based recommendation systems. Journal of Systems and Software 128 (2017),
200–219.

[8] Valentina Grigoreanu, Margaret Burnett, Susan Wiedenbeck, Jill Cao, Kyle Rec-
tor, and Irwin Kwan. [n. d.]. End-user Debugging Strategies: A Sensemaking
Perspective. ACM Trans. Comput.-Hum. Interact. ([n. d.]), 5:1–5:28.

[9] Xiaoyu Jin, Nan Niu, and Michael Wagner. 2017. Facilitating end-user developers
by estimating time cost of foraging a webpage. In 2017 IEEE Symposium on
Visual Languages and Human-Centric Computing, VL/HCC 2017, Raleigh, NC, USA,
October 11-14, 2017. 31–35. https://doi.org/10.1109/VLHCC.2017.8103447

[10] Mik Kersten and Gail CMurphy. 2006. Using task context to improve programmer
productivity. In Proceedings of the 14th ACM SIGSOFT international symposium
on Foundations of software engineering. ACM, 1–11.

[11] Nicolas Mangano and André vander Hoek. 2012. The design and evaluation
of a tool to support software designers at the whiteboard. Automated Software
Engineering 19, 4 (01 Dec 2012), 381–421.

[12] Jason Pascoe. 1998. Adding generic contextual capabilities to wearable computers.
In Wearable Computers, 1998. Digest of Papers. Second International Symposium
on. IEEE, 92–99.

[13] David Piorkowski, Scott D Fleming, Christopher Scaffidi, Margaret Burnett, Irwin
Kwan, Austin Z Henley, Jamie Macbeth, Charles Hill, and Amber Horvath. 2015.
Tofi x or to learn? How production bias affects developers’ information foraging
during debugging. In Software Maintenance and Evolution (ICSME), 2015 IEEE
International Conference on. IEEE, 11–20.

[14] Peter Pirolli and Stuart Card. 1995. Information Foraging in Information Access
Environments. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’95). 51–58.

[15] Bill Schilit, Norman Adams, and Roy Want. 1994. Context-aware computing
applications. In Mobile Computing Systems and Applications, 1994. WMCSA 1994.
First Workshop on. IEEE, 85–90.

[16] Bill N Schilit and Marvin M Theimer. 1994. Disseminating active map information
to mobile hosts. IEEE network 8, 5 (1994), 22–32.

[17] Petcharat Viriyakattiyaporn and Gail C Murphy. 2010. Improving program
navigation with an active help system. In Proceedings of the 2010 Conference of
the Center for Advanced Studies on Collaborative Research. IBM Corp., 27–41.

[18] YiWang. 2017. Characterizing Developer Behavior in Cloud Based IDEs. In Empir-
ical Software Engineering and Measurement (ESEM), 2017 ACM/IEEE International
Symposium on. IEEE, 48–57.

36

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:00:59 UTC from IEEE Xplore. Restrictions apply.

