

The Onion Patch: Migration in Open Source Ecosystems
Corey Jergensen, Anita Sarma

Computer Science and Engineering Department
University of Nebraska, Lincoln

Lincoln, NE, USA 98588

{cjergens, asarma}@cse.unl.edu

Patrick Wagstrom
IBM TJ Watson Research Center

19 Skyline Drive, Hawthorne
 NY, USA 10532

pwagstro@us.ibm.com

ABSTRACT
Past research established that individuals joining an Open Source
community typically follow a socialization process called “the
onion model”: newcomers join a project by first contributing at
the periphery through mailing list discussions and bug trackers
and as they develop skill and reputation within the community
they advance to central roles of contributing code and making
design decisions. However, the modern Open Source landscape
has fewer projects that operate independently and many projects
under the umbrella of software ecosystems that bring together
projects with common underlying components, technology, and
social norms. Participants in such an ecosystems may be able to
utilize a significant amount of transferrable knowledge when
moving between projects in the ecosystem and, thereby, skip steps
in the onion model. In this paper, we examine whether the onion
model of joining and progressing in a standalone Open Source
project still holds true in large project ecosystems and how the
model might change in such settings.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management: programming
teams: D.2.8 [Software Engineering]: Metrics: process metrics

General Terms
Human Factors, Management, and Measurement.

Keywords
Open Source software, project ecosystem, contribution model.

1. INTRODUCTION
Open Source projects have been widely studied by researchers in
the fields of software engineering, computer supported coopera-
tive-work, and management [7, 28]. Research has included studies
of motivational factors that drive volunteers to contribute time and
code towards the common public good [18, 22, 31], the socializa-
tion process through which newcomers become active community
members [10, 29], the sustainability of Open Source projects
given their high rates of turnover and barriers to contribution [27],
and the underlying social organizations in Open Source projects
[2-3, 24].

One of the overarching attributes of Open Source is that it draws
expertise and contributions from a pool of volunteers. Because
these volunteers often exhibit high turnover rates, there is a need
to understand how projects continue to recruit, educate, and so-
cialize volunteers to maintain vibrancy [27, 31]. The past charac-

terization of the development (or socialization) process maintains
that new comers start at the periphery with low technical skill
requirements, for example by posting to project mailing lists or
participating in project chat rooms. As the skills and experience of
the user evolves they may choose to report bugs, which requires a
small amount of technical skill. Through their contributions users
continue to build their reputation in the community and some may
migrate toward more technical and central roles such as code con-
tribution and moderation. This model, called the onion model,
depicts roles as concentric layers with high skill, high reputation
roles at the center and low technical skill and reputation at the
periphery [6, 19, 32]. Variations on the model have been qualita-
tively and empirically validated in a number of projects (e.g.,
Apache [25], Freenet [29], Netscape [19], Mozilla [26], Python
[10], and others [28]).

These studies form the foundation of our understanding of Open
Source software. The existing characterization of Open Source
projects is based on studies of large individual projects. However,
these characterizations may be somewhat outdated in light of
recent changes. Many modern Open Source projects strongly
resemble large enterprise products that comprise numerous
smaller, related projects, engage individuals as wells as corpora-
tions, and involve contributions from volunteers as well as paid
members [4]. This new genre of Open Source, termed OSS 2.0 by
Fitzgerald [12], is significantly different from its standalone indi-
vidual antecedents. Earlier lessons and insights about Open
Source projects might not hold true in this new collaborative land-
scape populated by complex software ecosystems and further
studies to characterize this emergent OSS 2.0 phenomenon are
required [4, 12]. For example, the Eclipse Foundation, which has
its roots in the Eclipse Integrated Development Environment
(IDE), which was released as Open Source by IBM, has expanded
to encompass a wide variety of end user tools based on a common
set of technologies beyond just the IDE experience, and include
tools for developing complex web applications on the client and
server, version control tools, and identity management. The foun-
dation has numerous and significant contributions from some of
the largest players in technology including IBM, Intel, and Oracle,
in addition to substantial participation from volunteers and univer-
sity students [9, 30]. Open Source ecosystems may have a variety
of different focuses, such as GNOME and KDEs efforts to create
desktop environments [23], developer tools and web infrastructure
from Apache [22, 26], and support for Open Source programming
languages [4], among others.

While past studies provided insight into how Open Source com-
munities function, most do not address the interconnected nature
of modern OSS 2.0 style ecosystems. Since projects in an ecosys-
tem share underlying technical infrastructure and often follow
similar social norms, members can participate in multiple projects
or move across projects in an ecosystem with relative ease. The
socialization process of the onion model may not hold true if de-
velopers can easily move from one project to another and utilize

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC/FSE’11, September 5-9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09…$10.00.

70

much of their knowledge and reputation from elsewhere in the
ecosystem. This leads to our first research question:

RQ1: To what extent do members migrate across projects in soft-
ware project ecosystems?

When a developer joins a project from elsewhere in the ecosys-
tem, rather than starting the socialization and technical knowledge
acquisition process from scratch, it is likely that some of their
reputation and technical skill will allow the developer to bypass
portions of the basic socialization process. The manifestation of
this knowledge transfer process, however, is unknown. Does ex-
isting knowledge allow a developer to bypass the socializations
process, or merely compress the duration? This gives rise to our
second research question:

RQ2: When members migrate across projects can they use knowl-
edge common across projects to jumpstart their contribution to a
new project?

Finally, previous research has suggested that experience and ten-
ure in an individual project is a driving force in moving develop-
ers toward the center or core of a project [3, 26]. This is predi-
cated on developers taking time to learn the code and build up
reputation in the community. However, developers in an OSS 2.0
ecosystem are not only able to transfer general process informa-
tion and reputation from one project to another, but may be able to
reuse their technical expertise in shared code components or so-
cial expertise in enhancing a particular area. This can improve
their ability to directly contribute to the core of a project. In such
an environment, where developers can fluidly move from one
project to another related project it is not known whether experi-
ence and tenure within a project are the primary factors affecting
the centrality of contributions or if other factors overshadow
these. This brings us to our third research question:

RQ3: In an interconnected software ecosystem, what factors affect
the contribution type and quality?

We answer these questions through a longitudinal analysis of a
selection of projects in the GNOME ecosystem. These are stable
and mature Open Source projects that have attracted significant
contributions from volunteer and commercial developers. These
projects provide a rich data source because they all have between
six to ten years of project archival history. The projects also have
a significant overlap of developers, that is, there are many devel-
opers who have contributed to multiple projects in the period of
our study. For each of these projects, we analyzed mail messages
from project mailing lists, comments and actions from the project
bug trackers, and code contributions made through the project
version control systems. We further refined contributions through
the version control system into source code contributions and
other types of contributions, such as translation, documentation,
and media. This allows a further differentiation of project mem-
bers and a more robust analysis of developer progression paths
and the centrality of developer contributions.

We find that within our sample there is a significant population
that is active on multiple projects within the ecosystem. Based on
an analysis of patterns that developers follow in joining individual
projects and when participating in the entire ecosystem, we find
that there is little evidence of individuals following the pure onion
model. Rather, we identify multiple patterns that are contradictory
to the model or otherwise compress the model. For example, a
large majority of developers only made technical contributions to
the project. In the subset of the six projects that we analyzed we

found 81.65% of members participating in only technical medium,
of which 64.67% were active only in source code repositories.

We also note, that in most cases prior experience in a project eco-
system does not have an effect on the centrality of contribution
when controlling for tenure within a project. In fact, the longer a
developer is associated with a project, the lower the centrality of
their contributions. After further generalization of this behavior
we find that new developers and those who have been active for
between 2 and 5 releases both have about the same level of cen-
trality for contributions to project source code, while very experi-
enced developers tend to move away from direct code creation
tasks, leading to lower centrality of contributions.

Finally, we attempt to uncover broader trends that may lead to a
higher centrality of contribution. We find that there are certain
very specific domains, specifically translation and internationali-
zation, where there appears to be transferrable knowledge across
projects in the ecosystem that allows a developer to quickly make
high centrality contributions to project source code.

The rest of the paper is organized as follows: In Section 2, we
discuss some of the background on the socialization process in
Open Source projects and build our hypotheses. Sections 3 and 4
describe our data and present our analysis. In Section 5, we dis-
cuss our findings. Sections 6 and 7 close out the paper with a dis-
cussion of possible threats to research validity and our conclu-
sions.

2. SOCIALIZATION PROCESS IN OSS
Prior studies have identified a variety of barriers that newcomers
face in the course of immigrating to a new Open Source project
[11, 18]. Open Source projects typically do not provide formal
mentoring and training for newcomers and it is the responsibility
of the newcomer to identify the appropriate technical tasks and
start contributing [10, 29]. Most projects have a public list of open
bugs and issues and newcomers are encouraged to start their in-
vestigations there or by addressing a concern the individual de-
veloper has identified. It is rare that newcomers are specifically
directed to technical tasks. For example in an analysis of the
Freenet project, von Krogh et al. found that only 1 in 6 newcom-
ers were given specific technical tasks to work on [29]. Instead, a
majority of newcomers were given general encouragement after
expressing an interest in joining the community through the mail-
ing list. Further, many projects lack an explicit architecture or
system design, making it difficult for newcomers to understand
the system before they can start contributing [10]. Finally, irre-
spective of the depth of technical knowledge that a user may pos-
sess, making significant technical contributions to a community
requires social standing and identity in the community. In most
projects, commit access is only given after a newcomer has
proved their worth and potential to the active community mem-
bers; a process that limits the overall potential contributions of
newcomers to the project [10, 29].

The process through which newcomers gain access rights and
become code contributors have been studied by many researchers
[1, 6, 19]. The most common Open Source development model is
called the onion model. This model postulates that members in an
Open Source community have different roles ranging from pe-
ripheral users to core contributors and these roles are arranged as
concentric layers – forming layers in the onion. More specifically,
the following roles have been suggested (progressing from most
central and most technical layer to outer layers that are the least
technical): project leader, core developer, active developer, bug

71

fixer, bug reporter, documenters, users (active in mail messages),
and peripheral user.

von Krogh et al. conducted a qualitative study of the transition of
roles in Open Source and proposed the concept of a “joining
script” for new developers joining a community [29]. They cate-
gorized members into three broad groups: joiners are members
who are active only in mailing lists, newcomers are members who
have just gained commit access, and developers are active mem-
bers with commit access who have shown strength of contribu-
tions and a technical ability. Potential developers (joiners) start by
joining project mailing lists that allow them to converse about the
project and learn some of the social norms and technical capabili-
ties of the project. As they participate for extended periods of time
potential developers learn how to properly participate in the
community by submitting bugs, triaging bugs, and eventually
working to track down the technical details of bugs by submitting
small patches. After a joiner has shown competence with manag-
ing bugs they may be offered the ability to become a committer
(newcomer) to a project, which allows them to directly modify the
project source code without the need of an intermediary. After an
intermediary trial period newcomers are considered to have transi-
tioned to developer, if no major concerns were raised.

In a complimentary study, Duchenaut identified trajectories for
individuals based on successful stories of Open Source developers
[10]. One such trajectory has the following stages: (1) peripheral
monitoring of activity, (2) bug reporting and patch suggestions,
(3) commit rights and bug fixing, (4) module level leadership, (5)
becoming vested in the community, and (6) gaining approval of
core members for far reaching (architectural) changes. His study
suggests that to succeed in becoming a part of the community
there are social “rites of passage” at each stage in which periph-
eral members must gain the acceptance of core members and that
political maneuverings are often needed to create an identify for
oneself and gain acceptance from the community leaders.

While no consistent naming scheme has arisen for roles in Open
Source projects (e.g., maintainers instead of core member, patch-
ers instead of bug fixers [10, 32]), a consistent finding is that
members near the center of the model exert more influence over
the technical decisions of the project as well as other factors af-
fecting the community [3, 10, 22]. For example, in Linux, the
project leader, Linus Torvalds, has the final say regarding techni-
cal directions. In Apache, the board of directors forms the core
layer and is responsible for making final decisions regarding pro-
ject plans and features. The onion model of role progression is
considered meritocratic and as members gain experience and
make larger contributions to the project they migrate to more cen-
tral roles in the community [32]. This general model of immigra-
tion and participation in Open Source projects as a process of
moving from non-technical to technical processes provides a
foundation to our first hypothesis:

Hypothesis 1: New comers to project communities will begin by
participating in the least technically challenging medium, before
moving to more technical mediums.
Other studies have also shown the importance of social factors for
the success in Open Source projects. Oh and Jeon [27] found that
the social network and the strength of the ties in the community
was a good indicator for retention of members in the community
in the face of external factors such as other projects, monetary
incentives, etc. Bird et al. found that in the Open Source commu-
nities that they studied (Apache, Postgres), attaining developer
status was dependent on the tenure of that individual in the project

and that the social status of an individual was a stronger criterion
for success [2]. They identified the inherent social structures in
the community based on mail messages and found that successful
members were also social hubs. In their seminal study von Krogh
et al. found that developers who had generational knowledge (ac-
tive across multiple releases) made more far-reaching changes,
whereas new developers largely made localized changes [29].
This leads to our second hypothesis:

Hypothesis 2: As developers gain more experience in a project
they will contribute more to the core of the project source code.
The central premise of the onion model is that the progression
from a passive user to an active developer entails a learning proc-
ess, both from a social and technical perspective. However, when
projects are interrelated the time needed to learn the social culture
or technology might be lower. Project ecosystems often constitute
projects that are heavily interrelated. For example, Eclipse hosts a
multitude of projects that all are built on a common technology
and utilize a common development infrastructure [9]. Similarly,
Apache contains numerous common libraries that are shared
amongst projects written in both Java and C. It also has a formal
process for development and participation, the Apache Way,
which describes how developers are to communicate and manage
projects [13, 22]. GNOME, a successful desktop environment for
Linux and Unix systems, likewise has a consistent infrastructure
across projects that contain common libraries and widgets that
allow developers to leverage knowledge gained in related projects
[16]. Such common infrastructure, therefore, should reduce the
amount of new technical and social knowledge that must be ac-
quired when moving between projects. This is the premise of our
third hypothesis:

Hypothesis 3: Developers who have been active on related pro-
jects in the same ecosystem will be able to transfer knowledge and
reputation to short-circuit the onion model of participation and
contribute to the core of a project sooner than those who have
not.
In summary, the immigration process in Open Source projects has
a strong social component. However, the majority of these studies
have been performed on individual projects. To the best of our
knowledge we are the first to study the development process
model in an Open Source ecosystem. Prior work by Dagenais et
al. [8] investigates how newcomers get on board new projects
within a corporate environment by studying how they learn about
the technical landscape and the social culture of individual pro-
jects. Findings from the study recommend mentoring guidance,
frequent feedback, and creating a project landscape with (technol-
ogy) markers to make it easier for newcomer to understand the
system. Although, this study is for a commercial project, it relates
to our work since it investigates migration across projects in a
community. However, its findings are not fully applicable to Open
Source ecosystems, which have very different characteristics with
much less hands-on training and feedback provided to newcom-
ers.

3. DATA COLLECTION
For our analysis, we examined the ecosystem around the GNOME
project, an effort to create a robust and usable desktop environ-
ment for Linux and other Open Source operating systems.
Founded in 1997, GNOME has a fairly open policy of accepting
new projects into the ecosystem, which gives the project the abil-
ity to use GNOME servers for infrastructure needs. Throughout
the history of GNOME there have been more than 1,200 different

72

projects -- many of which are smaller projects that never made it
into the official distribution of GNOME.

3.1 Background of GNOME
GNOME is built on a set of common technologies and libraries
that include, among others, a common graphical user interface
toolkit with associated user interface guidelines; components for
common tasks such as displaying images, libraries for managing
program configuration and processing XML files, and mecha-
nisms for translation across the ecosystem. These shared tech-
nologies do not, however, enforce a required programming lan-
guage or set of programming paradigms. The project uses a num-
ber of different programming languages for key components in-
cluding C, C++, Python, C#, and in some older cases, scheme [15-
16].

In addition to common technical interfaces, the ecosystem also
has a shared environment for managing the technical and social
parts of a project. It provides a common hosting framework for
project source code (originally CVS, later Subversion, and now
git [17]), defect and request management (Bugzilla), and discus-
sion and decision making (mailing lists and real-time chat). The
project has an overall foundation board that manages the major
directions and business aspects of the ecosystem, but individual
projects are given significant amounts of autonomy. Individuals
within the community are elected or appointed to major roles in
the ecosystem that cross project boundaries, such as release man-
ager [16, 21].

To make our analysis tractable and test our hypotheses, we had to
filter the community down to a subset of projects that have multi-
ple releases as part of the official GNOME desktop and have a
significant number of developers, bug reporters, and people active
on project mailing lists. Further, to understand immigration across
projects we needed to select those projects that have a significant
overlap in project membership.

3.2 Data Collected
We collected data for the GNOME project from 1997 to 2007,
including data from mailing list archives, bug tracking system,
and source code repository. In total, more than 1,000 developers
made nearly 2.5 million changes to files grouped into approxi-
mately 480,000 commits. We worked with the project administra-
tors to obtain a copy of the complete bug database for the project,
which contained 790,000 comments on 250,000 bugs, reported by
26,000 different people. This data was loaded into a large data-
base with a single schema that integrates all of these data streams.

As is common with many long-running Open Source projects, the
different data streams were not seamlessly integrated with one
another, with individuals using different account names for pro-
ject mailing lists, bug trackers, and source code repository. One of
the authors worked with members of the community, and utilized
information from norms and practices, such as referencing bug
numbers in source code commit messages, to link together all the
elements. The most difficult part of cross-linking the GNOME
data was in normalizing user names across databases. While, a
large part of the normalization process was automated (matching
performed by comparing email addresses and provided user
names across data sources), it was necessary to consult with indi-
viduals in the community to correctly identify and validate the
names and identities for about 10% of the participants.
The openness of the community also means that it is easy for any-
one to sign up for project mailing lists and report bugs, yielding
thousands of individuals with only peripheral interest in the com-

munity. As we are concerned with the immigration process
through which a member becomes a committer, we examine only
those individuals who eventually obtained direct commit access to
the project source code. Furthermore, as the community keeps
almost all file-based artifacts in project code repositories, includ-
ing translations and other non-code related files, we had the op-
portunity to investigate whether members whose contributions are
non source code (e.g., translators, documenters, and artists) follow
a different path to become a committer. We, therefore separately
analyze contributions made to the project source code repository
according to the type of artifact contributed. That is, we differen-
tiate between source code, project documentation, project build
scripts, translations, and other artifacts. For the purpose of our
study, we are most interested in the two largest categories of arti-
facts, actual project source code (e.g. C, C++, python, etc) and
project translations and documentation.

For our analysis, we selected a subset of six projects. These pro-
jects were selected on the basis of their extensive history, avail-
ability of archival artifacts, prominence in the ecosystem and the
overlap of developers between these projects. Three projects are
end user applications and three are utility or library packages:

• Project 134: An end user application for viewing and light-
weight graphics manipulation.

• Project 135: A web browser that is customized to integrate into
the desktop environment.

• Project 190: A library and several tools for applications to man-
age settings in a standard and unified method. Most end user
applications in the ecosystem rely on this library as a critical
piece of infrastructure. All projects in the subset we examine
utilize this library as a key component.

• Project 377: A collection of utilities for developers and end-
users alike to make the most out of their desktop experience.

• Project 378: A system level library for the transparent manipu-
lation of files and other file-like resources on the local machine
and across network connections. The use of this library is not
required by all end user applications; however, all applications
in this subset utilize this library.

• Project 405: An extensible end user spreadsheet application.

4. ANALYSIS
To understand the effect of ecosystems and interconnectedness of
projects on the “joining script” of members, we began by analyz-
ing the overlap of individuals who committed code to multiple
projects in the ecosystem. In the matrix shown in Table 1, the
diagonal shows the total number of unique individuals who were
identified as contributing source code (as opposed to translations,
documentation, and media) to the project source code repository
during the period of study and other cells show the number of
developers in common between the two projects.

Table 1: Overlap of Source Code Committers Between
Projects in Study

 134 135 190 377 378 405
134 102 32 70 54 73 45
135 85 41 37 44 22
190 148 73 97 54
377 163 74 63
378 175 58
405 124

73

Despite the broad spectrum of projects in our study, we see that
there is a significant overlap of individuals contributing source
code to the projects. In fact we see 97 developers who are com-
mon across projects numbered 378 and 190. When we expand our
observations to include all those who made contributions to the
project source code repository (including documentation and
translations), we see that, indeed, there is a much greater overlap
between projects as seen in Table 2.

Table 2: Overlap of All Committers Between Projects in
Study

Going beyond project source code repositories and including other
major project archival mediums (mailing lists and bug tracker),
we see that each of these projects attracted significant numbers of
contributors and engaged users, many of whom were also active
in other projects within the ecosystem as shown in Table 3.

Table 3: Overlap of Participants in Mailing Lists, Bug
Tracker, and Source Code Repository Between Projects

 134 135 190 377 378 405
134 369 216 244 264 273 175
135 716 222 226 285 162
190 541 263 311 189
377 475 290 203
378 690 211
405 1,085

Having established that each of these projects within the GNOME
ecosystem have a significant number of contributors and that there
is significant overlap between individuals working on each pro-
ject, in the remainder of this section we analyze our research ques-
tions: first by examining the pattern of interaction that leads a new
contributor to become a developer in section 4.1, followed by an
analysis of how project tenure affects the centrality of developer
contributions in section 4.2, an evaluation of ecosystem tenure in
section 4.3, and a principle component analysis to identify differ-
ent factors that effects centrality of developer contribution in sec-
tion 4.4.

4.1 Introductory Interaction Patterns
We begin by analyzing the progression paths of members across
the project archives. We performed two different levels of analy-
sis to examine the evolution of developers. At the first level, we
examine how developers join individual projects and at the next
level we take the pool of developer contributions as a whole
across the entire set of six projects that we are examining. For
each level, we build a pattern of the developer’s contributions by
identifying the first appearance of a developer’s contributions in
each of the three archival mediums: mails, bug tracking, and
source code. The release of the first contribution in each medium
is recorded and a progression path is established.

We grouped the progression paths into five major categories
based on their relationship to the socialization process in the soft-
ware ecosystem. In the most literal sense, we consider that a de-
veloper followed the onion model if they first contributed to pro-

ject mailing lists, then in a subsequent release contributed to the
project bug tracker, and in a yet later release contributed to project
source code. We note that many developers may not spread these
actions over three or more six-month release cycles, so we iden-
tify a similar accelerated progression. Table 4 provides a break-
down of the number of individuals in each progression path.

Table 4. Progression Across Social and Technical Mediums.

Individual projects Ecosystem subset
Category Members Percent Members Percent
Social-tech 24 1.82% 25 5.45%
Accelerated 100 7.58% 82 17.86%
Tech-social 118 8.95% 103 22.44%
Technical 224 16.98% 74 16.12%
Source only 853 64.67% 175 38.13%

Social-technical path: This includes members who start in social
medium (mail) and then progress to technical mediums in subse-
quent releases. We expanded this category from the original onion
model where members progress from mailing lists to bug tracker
activities and then to code commits, to also include members who
started in mailing lists but then received commit access and then
were found to participate in the project bug tracker. We did so,
because it might be possible that members contributed to technical
discussions of patches through the mailing list as opposed to rely-
ing on the project bug tracker. A key criterion for this category is
that members are active in only one medium during a release pe-
riod.

Accelerated path: This category includes members who start in
mailing list (social medium) and then participate in either techni-
cal medium (e.g., bug tracker or code), but have multiple kinds of
contribution during the same release. For example, we found indi-
viduals who appear in both mailing lists and bug tracker in the
same release. We also found individuals who participated in all
three mediums in the initial release. We combined all paths that
involved members who first started with a social process and then
moved to technical contributions into one group, since it is possi-
ble that our analysis at the release stage might miss members who
follow the traditional model, but where each stage lasts for weeks.

Technical-social path: This path is contrary to what has been
proposed in the onion model. We found members who started by
participating in bug tracker or project source code repositories and
then moving to mailing list participation. While in total this path
contributes a relatively small percentage, the interesting fact is
that these members participated in the social medium only after at
least one release of participating in the technical medium.

Technical only path: This category includes members who have
participated only in technical medium. Table 4 further subdivides
this category into members who had only contributed to project
source code repositories and members who had contributed source
code and participated in the bug tracker in any order (code contri-
bution followed by bug tracker activity, or vice versa). This di-
rectly contradicts the onion model and shows that members in a
project ecosystem can start by directly contributing to code with-
out prior socialization.

Our analysis shows that very few project members follow the
socialization process as predicted by the onion model, even when
we combine the “social” and “accelerated” categories (9.44%
when we combine the “Social-Tech” and the “Accelerated” pat-
terns). We only found a small percentage of users (8.95%) partici-
pating in social medium after making technical contributions. Our
largest group consisted of users who directly contributed to tech-

 134 135 190 377 378 405
134 210 120 162 163 164 107
135 154 122 123 121 69
190 225 169 181 109
377 281 166 133
378 261 112
405 187

74

nical medium (81.65% when we combine the “Technical” and the
“Source only” patterns). We therefore conclude that there is little
support for our first hypothesis that newcomers to project com-
munities begin by participating in the least technically challenging
medium, before moving to more technical mediums.

Next, we wanted to test whether a reason for the high percentage
of users directly contributing to a project could arise because these
members have experienced the socialization process in another
project within the ecosystem. We tracked user contributions and
their progression across all the six projects (see Table 4). By do-
ing so, we see a near tripling of people who follow some portion
of the onion model (individual projects: 1.82+7.58=9.4), which
increased to 23.3 (5.45+17.86), an increase by 2.47; while the
number of developers contributing only to the technical mediums
has fallen to 54.25% (combining the “Technical” and “Source
only” paths). This shows that within the broader ecosystem devel-
opers tend to follow a socialization process more similar to those
proposed in hypothesis 1, but still only a quarter of developers
follow a variation of the pattern. Therefore, at the ecosystem level
we also reject hypothesis 1.

4.2 Project Tenure and Code Centrality
After identifying the overlap of developers in projects and general
paths that developers take after joining a project, we evaluated the
effect tenure has on participation in a project, specifically with
respect to code centrality. That is, we investigate whether the
number of releases during which a participant is active in a project
affects whether they make core contributions. von Krogh et al.
found that members with generational knowledge (active across
multiple releases) made changes that spanned multiple files,
whereas new developers typically made changes that involved a
smaller set of localized files [29]. Similarly, Duchenaut claimed
that developers need certain social status before they can imple-
ment high impact changes [10].

To evaluate the centrality of a developer’s contributions, we
needed a method to score the centrality of each commit made to
the project source code repository. Source code can be thought of
as forming a network of different files that are related to each
other. There are a variety of ways to construct such a network, for
example one can use call graphs or package imports in languages
such as Java, or use the concept of logical commits [14]. We
chose to use the latter since it is not dependent on a particular
programming language and works for projects that use multiple
programming languages. Briefly, this method infers connections
between two different files in the source code repository when
they are committed together. For example, if a developer commits
files A, B, and C to the repository at the same time and as part of
the same commit, we infer that there is some common thread be-
tween files A, B, and C and create a triad in the network between
those files. The more times that files are committed together, the
higher the weight that is placed on the edges. As a project evolves,
this slowly creates a more complete network-based view of the
project history and source code.

Once a network of source code is created, it is possible to use
various social network analysis metrics to generate a numeric
centrality score for each file in the network at each time period,
thus identifying the files that are considered to be most central to
the project. Although there are a variety of different candidate
metrics, many are not applicable on disconnected networks or
make assumptions about the structure of disconnected networks
that are not appropriate for our analysis. One metric that is robust
and avoids issues with network structure while maintaining a

consistent implementation is eigenvector centrality [5, 20].
Mathematically, eigenvector centrality is the first eigenvector of
the adjacency matrix formulation of the network. In general terms
the interpretation of eigenvector centrality is such that nodes with
high eigenvector centrality tend to be connected to many other
nodes with high eigenvector centrality, while nodes with low ei-
genvector centrality tend to have few connections that are primar-
ily to other low scoring nodes. When we refer to the centrality of a
file at a particular release we refer to the eigenvector centrality of
that file based on the network of logical commits generated from
all commits up to and including that release cycle. In this way we
preserve relationships from the past while building the network
for future changes. For the purposes of this work, we consider
only source code files contained in the project source code reposi-
tory and exclude other files such as those that support translation
and documentation.

Since we are interested in the centrality of a developer’s contribu-
tion, the file level centralities need to be translated into developer
centrality. This requires attributing the centrality score of the file
to the developer who committed it. However, note that commits
made by developers often touch multiple files and developers
typically make numerous commits during each community release
cycle. Therefore, for an individual developer’s commit we define
the centrality as the mean of the eigenvector centrality of each of
the files that comprises the commit. From this we generate an
overall source code centrality score for each developer, which is
the sum of the centralities for each of the commits. In our calcula-
tions, a developer can become prominent in a project either
through making many commits to files with low or medium cen-
tralities, or by making many fewer commits to files with high
centrality scores, both of which are valuable measures about the
importance of developers’ contributions.

In addition to the centrality of files and developers, we collect
other pieces of information for each developer in the community
to assist us in understanding how a developer progresses within
the community. Unless otherwise specified, these metrics are
collected for each developer on each project on which they
worked during each time period in which they were active.

• Source Code Commits: Total number of commits containing
source code, documentation, and translation.

• Mail Count: Number of messages posted to project mailing lists
and the number of responses obtained from those messages.

• Tracker Activity: Number of comments created in project bug
tracker and total number of actions in the bug tracker. These
discussions are often technical in nature and focus on a specific
defect or feature.

• Project Experience: Number of releases since the developer’s
first activity on the project.

• Project Active Experience: Total number of releases in which
the developer was active on the project. This is Project Experi-
ence minus the number of releases for which the developer
made no contributions to the project.

In the process of building a regression model it is necessary to
evaluate predictor variables for independence from one another,
and also whether or not there is an undue reliance on the depend-
ent variable. We examined the correlation of the various variables
to the outcome metric, Source Code Centrality, and the other col-
lected variables. We found three variables that had sufficient in-
dependence for use as control variables in a regression model:

75

Mail Count, Tracker Activity and Project Experience. We could
not use Source Code Commits in the regression because the de-
pendent variable, Source Code Centrality, is a construct that relies
on a multiplicative transform of Source Code Commits and there-
fore had a very high correlation. Project active experience could
not be used because it had a very high correlation, approximately
0.96, with Project Experience. We selected Project Experience as
our variable of choice as it is the best depiction of the fact that
tenure accrues over the entire time a member is involved in a pro-
ject.

Instead of performing a simple regression with a single intercept,
we acknowledge that there is significant variance between the
projects in the ecosystem and instead create a regression model
with multiple intercepts, one for each project. The output of this
regression model can be seen in Table 5.

Table 5: Base Regression Model Illustrating Relationship
Between Project Experience and Source Code Centrality

Variable Estimate Significance
Mail Count 0.0675 < .0001
Tracker Activity 0.0100 <.0001
Project Experience -0.0522 0.0253

Adj R-squared: 0.4777, F: 311.4 on 9 and 3046 DF, p < .0001

In this basic model, we find that as expected social activities such
as posting messages to project mailing lists and combination of
social and technical activities such as being active on a project
bug tracker increase the Source Code centrality for a developer, as
shown by the positive sign on the estimates from the regression
model. This indicates a relationship between general project activ-
ity and Source Code centrality, but we also find that the number
of releases that a developer has been active on the project, which
has a negative sign on the regression estimate, decreases the over-
all Source Code centrality for the developer. In essence, while
controlling for other social and socio-technical activities, the
longer a developer remains active on a project, the lower the ex-
pected level of Source Code centrality. This may appear in con-
trast to other findings that show that tenure increases importance
in a project [1, 3], but we note that we are examining Source Code
centrality, and not an overall metric for importance in the project.
A developer with significant experience on a project may have
shifted to a different role that involves more leadership and less
actual development.

Our analysis shows that our second hypothesis: “as developers
gain more technical experience in a project they will contribute
more to the core of project source code” is not supported.

To gain further insight into the lack of effect of a developer’s
tenure in a project we performed additional analyses. Additional
explorations utilizing mathematical manipulations of Project Ex-
perience provided little insight, however, a simple binning algo-
rithm that grouped developers into three categories, New (first
release), Normal (second through fifth release), and Experienced
(sixth or more release), provided additional insight when used in a
regression model as shown in Table 6.

We once again find that the centrality of commits to the project
source code repository decreases the longer a developer has been
contributing to a project (as seen by the low estimate and non-
significance in results for Experienced Developers). However,
there is only a slight difference between new developers and de-
velopers who have been active for between 2-5 total releases (es-
timates of 0.5917 and 0.5489 with significant values). This sug-

gests that centrality for developers slightly increase for Normal
Developers and then reduces for Experienced Developers.

Table 6: Enhanced Model Illustrating Relationship Between
Project Experience and Source Code Centrality

Variable Estimate Significance
Mail Count 0.0653 < .0001
Activity Count 0.0099 <.0001
New Developer 0.5917 <.0001
Normal Developer 0.5489 <.0001
Experienced Developer 0.2327 0.2315

Adj R-squared: 0.4773, F: 279.9 on 10 and 3045 DF, p < .0001

It is unclear what happens to the fate of experienced developers. A
random examination of six developers who were active for six or
more releases on a single project showed that three of the devel-
opers remained central to the project in core leadership roles, two
of the developers made many fewer contributions to project
source code because they had adopted broader leadership roles in
the community (e.g. release manager and member of the founda-
tion board), and the sixth developer stopped contributing to devel-
oper source code entirely, instead focusing on bugs and shepherd-
ing the process of evaluating new feature requests for the project.

Additional explorations with different combinations and numbers
of bins for developer experience yielded no additional insight.
These results suggest that experienced developers can follow sev-
eral different paths, some remain active code contributors while
others may transition into more managerial or leadership roles
focusing instead on managing the community. Because of this
dispersion of roles we do not see a net effect of tenure in a project
on developers’ code centrality and, therefore, reject hypothesis 2.

4.3 Ecosystem Tenure and Code Centrality
In the next part of our work, we evaluated whether overall tenure
in the ecosystem had an impact on developers’ code centrality. If
it is true that there is substantial transferrable knowledge between
different projects in the ecosystem then developers with experi-
ence on other projects in the ecosystem should achieve higher
levels of Source Code centrality at an accelerated rate.

To assist in this model, in addition to the metrics collected in the
previous section we also collect the following metrics:

• Prior Experience: Number of releases the developer was active
on other projects before their first contribution to the project in
question (calculated once per developer per project).

• Total Experience: Number of releases since the developer was
first active in the ecosystem.

• Total Active Experience: Number of previous releases for
which the developer made contributions in the ecosystem.
Functionally, this is the Total Experience minus the number of
releases for which the developer made no contributions to pro-
jects in the ecosystem.

For a developer who is completely new to the entire ecosystem,
their prior experience will be ‘0’ and their total experience and
total active experience will be the same as in the previous section.

In most cases, we found that developers were active without any
major breaks in participation. The correlation between Total Ex-
perience and Total Active Experience was 0.97, preventing their
mutual use in a single regression model. The correlation between
Total Experience and Project Experience was 0.78, indicating that
in most cases it is inappropriate to use both variables in a regres-

76

sion model. We select Prior Experience as the more relevant addi-
tional metric for depicting experience in the ecosystem.

Thus, building on the models in the previous section we add the
additional variable of Prior Experience to evaluate to what degree
a developer’s experience on projects in the ecosystem prior to
joining this project affects the centrality of their contributions.
The results of this regression are shown in Table 7 and indicate
that a developer’s Prior Experience in the ecosystem does not play
a role in the centrality of source code commits as evidenced by the
negative estimate and non-significance of the result. Therefore,
we reject hypothesis 3.

Table 7: Regression Model Relating Project Experience,
Ecosystem Experience, and Source Code Centrality

Variable Estimate Significance
Mail Count 0.0675 < .0001
Activity Count 0.0100 <.0001
Project Experience -0.0533 0.0232
Prior Experience -0.0138 0.6809

Adj R-squared: 0.4775, F: 280.2 on 10 and 3045 DF, p < .0001

4.4 Broad Factors that Affect Code Centrality
As we found that prior experience was not indicative of code cen-
trality, we examined the data to find other factors that may be
related to increased developer centrality. Further, a major problem
that we faced in the analysis of this community is the fact that
many of the variables related to developer participation that can
be collected from the archives were highly correlated, making
their use inappropriate in a regression model. However, it is pos-
sible to gain additional insight into which variables have the
greatest effect on our dependent variable by performing a princi-
pal component analysis and using those components as predictors
for Source Code Centrality. This also allows for broader generali-
zation of attributes that lead to an increase in Source Code central-
ity. Table 8 (column 1) lists the variables that we collected from
the archives: C, C#, Java code commits, documentation related
commits, translation commits, total number of mail messages,
number of messages started by a developer, number responses to
the original message by a developer, bug tracker activity (e.g.
bugs opened, closed, statuses changed), comments left in the bug
tracker, and the five experience variables previously discussed.

There were four components that had a standard deviation of
greater than one and ten factors with a standard deviation of less

Table 8: Major Component Loadings from Principal
Component Analysis

Component 1 2 3 4
Std Dev 2.3286 1.8840 1.1644 1.0550
Source Commits -0.371 0.254
Doc Commits -0.386 0.275
Trans Commits -0.145 -0.215 0.492
Message Count -0.388 -0.159
Message Started -0.343 0.194 -0.442
Message Responses -0.341 0.187 -0.445
Bug Tracker Activity -0.367 0.232
Bug Tracker Comments -0.388
Prior Experience -0.146 0.773 0.311
Total Experience -0.502 0.229
Total Active Experience -0.476 -0.300 -0.138
Project Experience -0.509 0.147
Project Active Experience -0.467 -0.310 -0.126

than one. In keeping with convention, we selected the four com-
ponents with greatest explanatory power for further analysis. The
interpretations of the factors, as presented in Table 8 are as fol-
lows:
Component 1: The inverse of artifacts created by the developer,
which translates to the inverse of total participation. Developers
who score very low on this component have created numerous
artifacts in any of the archival mediums.

Component 2: The inverse of the time that a developer has spent
on the project. New developers will score higher on this compo-
nent than developers who have been active in the community or
project for a significant amount of time.

Component 3: Broad social experience. Developers who score
high on this component have been active on mailing lists and have
been in the ecosystem for a long time. In contrast, developers who
score lower are newer to the ecosystem and project. Note that
translators can fall in the latter group since translation is often a
more solitary role within the community and translators frequently
pop in and out of projects.
Component 4: Technical medium expertise. Developers scoring
high in the component have been active in both the bug tracker
and Source Code repositories, but less active on project mailing
lists. They typically have significant amounts of experience in the
ecosystem, but may be new to a project. An expert translator who
enters a project to improve its support for internationalization
would score high on this component.

As before, we create a regression model to evaluate the relation-
ship between these generated components and Source Code Cen-
trality. We again allow the intercept for each project to vary to
account for differences in code structure in the ecosystem. The
results can be seen in Table 9.

Table 9: Regression Model Illustrating Relationship Between
Generated Components and Source Code Centrality

Variable Estimate Significance
Component 1 -1.0341 < .0001
Component 2 0.1848 <.0001
Component 3 -0.1230 0.0001
Component 4 0.6600 <.0001

Adj R-squared: 0.6268, F: 514.1 on 10 and 3045 DF, p < .0001

Unsurprisingly we find that developers who create the most arti-
facts, as shown by a low score in Component 1, typically have the
highest Source Code Centrality (negative regression estimate and
highly significant). This is to be expected from our definition of
Source Code centrality.

We also find that individuals with more experience in the project,
as shown by a lower score in component 2 will have lower overall
Source Code centrality (on account of the component loadings
being the inverse of overall experience and the positive sign on
the estimate in the regression model). This reinforces our findings
from earlier in section 4.2 and 4.3 that experience in the commu-
nity leads to a lower level of Source Code Centrality.

Component 3 shows that individuals with broad social experience
typically have lower amounts of Source Code Centrality. Remem-
ber, developers with high social experience rate high in the com-
ponent loading and the component has a negative estimate in our
regression, which leads to the above conclusion. This could be as
a result of a distribution of work within the projects (e.g. some
people write code, some people manage aspects of the project on
the mailing lists). The reverse interpretation is that developers
with little experience in the ecosystem and few social contribu-

77

tions on mail messages may be more likely to contribute central-
ized source code.

Component 4 indicates that developers with expertise in the tech-
nical mediums, particularly those involved in translation and in-
ternationalization, and those who also have prior experience in the
ecosystem but may be new to the project have the ability to
achieve high levels of Source Code centrality. In this narrow con-
text, we see some of the only evidence that prior experience in the
project ecosystem may allow an individual to sidestep some of the
standard learning processes and begin to commit directly to core
elements of the project.

Therefore, we see that while hypothesis 3 can generally be re-
jected across the ecosystem, there are some small niches where it
may hold true. In particular, this appears to hold true for the spe-
cialized case of translators migrating across projects in the ecosys-
tem, as evidenced by component 4.

5. DISCUSSION
From our analysis of developers in the selected projects we found
significant overlap in the population of developers between pro-
jects. This held true not only for developers who wrote the code
for the projects, but also individuals who documented, translated,
created other media, and even the engaged users who were only
active on project mailing lists. This established the strong possi-
bility that developers would have a shared body of transferrable
knowledge that they can take from one project to another and
answers research question 1 by showing that developers do move
between and participate in multiple projects in an ecosystem, of-
ten times in significant numbers.

Surprisingly, however, when we analyzed the progression paths of
individual developers, both within individual projects and across
the projects in the ecosystem, we found many individuals who
eschewed social communication mediums and focused only on the
technical mediums, in strong contrast to what was predicted by
the onion model of Open Source participation. At the individual
project level fewer than 1 in 10 developers follows the onion
model predicted pattern of moving from social to socio-technical
to technical mediums. When we broadened our analysis to include
the entire ecosystem we found slightly stronger signs of the onion
model as 23.31% of the members followed the onion model sug-
gested progression from social to technical mediums.

In contrast to the onion model, a majority of participants were
found to have participated only in technical medium (81.65% per
project and 54.25% when looking at all six projects). This is con-
trary to most current studies that have analyzed the development
process in Open Source projects, albeit these were conducted on
single, standalone projects. One explanation for these results
could be that developers who jump right in with code contribu-
tions might have undergone a socialization process in another
project in the ecosystem that helped them jumpstart their contribu-
tion; or there might be other social communication medium such
as direct person-person email or real-time chat (IRC) that were
used by these technical contributors for which we do not have
archival data. The lack of support for the onion model and for our
first hypothesis suggests that the joining script for developers,
especially in the new category of OSS 2.0 projects, is still a fertile
field of research. Particularly, the interaction of additional com-
munication mediums, such as blogs, Twitter, real team chat, social
software development sites such as GitHub1 and BitBucket2, and

1 https://github.com/

social networking sites in combination with the increased partici-
pation of commercial firms means that Open Source has evolved
significantly in the last ten years and that previous models of so-
cial participation may need to be updated for the current state of
the art in Open Source software development.

The next step was to analyze whether prior experience, either on a
single project or in the broader ecosystem had any effect on the
contribution of developers. As opposed to simply summing up the
number of commits that an individual made, we calculated the
centrality of each developer’s contribution as a proxy for the im-
portance or depth of contribution. In this way, an individual who
changes files that are considered to be central to the project will
score higher than a developer who is highly active but focuses all
of their work on a peripheral component such as a plugin.

In contrast to our expectations and hypothesis 2 and 3, we found
that experience in communities, both in individual projects and
the ecosystem as a whole, play little role in the centrality of con-
tributions to project source code. In fact, new developers were
slightly more likely to have central contributions than experienced
developers and those developers with extensive experience were
found to have widely varying levels of centrality. There are many
possible reasons for this phenomenon. First, it is possible that
experienced developers, such as those who have been active for
six or more releases, are venturing into project management and
leadership roles, which require more time focusing on manage-
ment or architecture than actual development. While it is likely
that these developers have a deep and robust understanding of the
project source code and architecture, it may be that their skills and
experience are better utilized in managing and shepherding other
users; a finding that was partially echoed by a random examina-
tion of experienced developers.

A possible cause for the lack of effect of prior experience across
projects in the ecosystem could be as a result of the structure of
the projects themselves. The bulk of the code for most of the pro-
jects was written in C, a language that isn’t always as amenable to
modular code structures as managed languages such as Java and
Python. If developers migrate across projects in the ecosystem and
bring with them a feature gift to the new project [29], it is possible
that the architecture of the new project requires substantial modi-
fications to core elements of the project, therefore increasing the
centrality of the new developer’s contributions by virtue of the
number of modifications made and the location of those modifica-
tions.

When we attempted to identify additional factors that played a
role in source code centrality as per research question 3, we found
one group of developers who appeared to benefit from learning in
the ecosystem: translators. A major influencing factor of this is
likely the very standard method for internationalization across all
projects. A translator can introduce internationalization features to
a project with modifications to only a handful of header files and
by modifying references to strings in the project in a fairly me-
chanical manner, something that is easily reproducible across
projects. The actions of translators and other individuals who do
not write code are ripe for future research.

In summary, the major implications of our study relate to the
process of managing a software development team. For individual
projects, we found little evidence for the commonly discussed
“onion” model of participation that involves individuals migrating
from the edges of a project to the core through a gradual socializa-

2 https://bitbucket.org/

78

tion process, although there was slightly more support in con-
nected ecosystems. This suggests that open source projects should
re-evaluate the process used for socializing new developers and
eventually awarding committer status. For software engineering
researchers, this study provides a foundation for understanding
participation in complex systems using a multi-modal approach,
for example, using source code, email, bug trackers, and other
social media to understand participation.

Finally, our study provides an impetus for re-evaluating the com-
monly accepted onion model, which may be overly limiting.
Complex ecosystems involve developers moving across multiple
projects. A well-designed architecture can facilitate this flow of
individuals and knowledge. Further, because of this migration and
a subsequent lack of generational knowledge, further investiga-
tions into technology and methods that help in externalizing the
semantic knowledge of experienced developers is needed.

6. THREATS TO VALIDITY
As our findings are in contrast to many previous studies of indi-
vidual Open Source projects, we must be conscientious of the
limits of our research and the possible threats to the internal, con-
struct, and external validity of our work.

Internal validity: Our analysis is based on data extracted from
public project archives – mailing lists, bug trackers, and source
code repositories. We have largely assumed that social interac-
tions and decision making are conducted via mailing lists and we
could have missed communication that occurred through personal
email, IRC channels or face-to-face meetings during conferences
and developer meetings. However, research literature suggests
that Open Source socialization processes largely occur through
project mailing lists, so in this respect we are in line with previous
literature but we realize that this might not be sufficient to under-
stand the communication in modern open source projects [3, 24].
Further Open Source norms and traditions encourage project dis-
cussions and communications to take place in the developer mail-
ing lists [13]. Next, our treatment of comments in the bug tracker
as a technical activity may be problematic. While most discus-
sions are about a particular issue or defect, there are situations
where users post non-technical information to the bug tracker,
such as feature requests, however these requests rarely come from
experienced project developers who have commit access and are a
minority of discussions.

Construct validity: There are three major construct validity
threats to our study. First, the use of a release as a unit of analysis
for our regressions and analysis of interaction patterns, which was
done to provide a consistent way of comparing across projects as
all projects followed the same 6 month cycle, may be problematic
if developers move through the onion model phases in shorter
time periods than the 6-month release cycles in GNOME. We
accommodated this concern where feasible, for example, when
calculating the progression paths in section 5.1 we optimistically
considered individuals to have followed a “social-technical” path
even when their first contributions to social and technical medi-
ums were in the same release. The second threat to construct va-
lidity lies in the creation and use of Source Code Centrality as a
proxy for core contributions. Past research has often used the raw
amount of contribution (e.g., number of commits or lines of code
changed) as a measure of developer activity [26, 29] or mailing
list communications as a measure of centrality in a project net-
work [2, 16]. In our study, we needed a finer grained measure to
characterize both the volume and importance of contributions,
which allowed us to identify whether prior experience enabled

developers to start making complicated, central changes earlier.
Logical commits were used to create the network as they provide
a language agnostic method to associate source code files and
eigenvector centrality was used because of its general robustness
in the face of various network topologies. Third, our analysis cen-
ters on code contributions in a project and, therefore, ignores con-
tributions of other stakeholders in a project (e.g., architects, test-
ers) and their socialization processes. However, note that past
literature that has demonstrated the existence of the onion model
investigated the socialization process of developers based on their
code contributions and is similar to our study.

External validity: Finally, there is a chance that GNOME may
not be a suitable sample of an Open Source ecosystem, limiting
the degree to which we can generalize our findings to other Open
Source ecosystems. Further, our study considered a subset of six
projects with significant history and participation as representative
of the greater GNOME ecosystem. The fact that these six projects
are well adopted within the community, have long histories, and
significant participation may make them outliers in the broader
context of the GNOME ecosystem. It is possible that other pro-
jects might demonstrate different socialization processes.

7. CONCLUSIONS
Within a modern OSS 2.0 project ecosystem our results are sub-
stantially in contrast to earlier research conducted on individual
projects when the state of Open Source software development had
not yet evolved to its current state. In particular, this work is novel
because to the best of the authors’ knowledge it is the first study
to consider these contributions in the context of an ecosystem. We
found little support for the traditional onion model within a single
project, although it was supported slightly more often when con-
tributions across multiple projects in the ecosystem were consid-
ered. Our results show that prior experience in the project or the
ecosystem does not seem to have a high effect on the overall cen-
trality of a developer’s contribution. Further, we found that tenure
in a project or even the ecosystem did not have a high impact on
the centrality of one’s code contributions when measured using
our metric that takes into account both number of contributions
and the eigenvector centrality. Our findings provide interesting
insights and contradict existing assumptions of the onion model;
these findings merit further explorations into project ecosystems.

In future work, we intend to further investigate these relationships
in modern OSS 2.0 communities. In particular the adoption of
decentralized version control systems such as git and collaborative
development sites like GitHub and BitBucket has fundamentally
rewritten the socialization process by allowing anyone to fork
project code and begin working on a project without the need for
formal designation as a committer. The degree to which these
sites support code annotation and discussion may both decrease
the number of people following the onion model and also assist
new developers in understanding complex technical aspects of
project source code. While this makes the development process
more accessible, it also has the potential to make contributions
more difficult by requiring developers to request that their code be
pulled into the main branch for each set of patches, rather than
receiving committer status once for all time.

Open Source has changed significantly over the past decade. What
we know about the socialization process in Open Source projects
may not be true in the ecosystems of Open Source 2.0. The evolu-
tion of tools, project ecosystems, and the increasing ability of
developers to easily move between different projects create a
variety of social and technical effects that require more study.

79

8. ACKNOWLEDGMENTS
This research is supported by grants NSF IIS-0414698, NSF CCF-
1016134, AFSOR FA9550-09-1-0129, and an NSF Graduate Re-
search Fellowship to the third author. The authors also thank
James Herbsleb for his assistance in structuring the original re-
search questions.

9. REFERENCES
[1] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swami-

nathan. Mining email social Networks. In Third International
Workshop on Mining Software Repositories, pages 137-143.
IEEE, 2006.

[2] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and G.
Hsu. Open borders? Immigration in open source projects. In
Fourth International Workshop on Mining Software Reposi-
tories. IEEE, 2007.

[3] C. Bird, D. Pattison, R. D'Souza, V. Filkov, and P. Devanbu.
Latent social structure in open source projects. In 16th ACM
SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, pages 24-35. ACM, 2008.

[4] C. Boldyreff, K. Crowston, B. Lundell, and A. Wasserman.
Open source ecosystems: diverse communities interacting. In
5th International Conference on Open Source Systems.
Springer, 2009.

[5] P. Bonacich. Power and centrality: a family of measures.
American Journal of Sociology, 92:1170-1182. March 1987.

[6] K. Crowston and J. Howison. The social structure of open
source software development teams. First Monday, 10(2),
February 2005.

[7] K. Crowston, K. Wei, J. Howison, and A. Wiggins.
Free/libre open source software development: what we know
and what we do not know. ACM Computing Surveys, 44(2),
2012 (Forthcoming).

[8] B. Dagenais, H. Ossher, R. Bellamy, M. Robillard, and J. de
Vries. Moving into a new software project landscape. In 32nd
ACM/IEEE International Conference on Software Engineer-
ing - Volume 1, pages 275-284, ACM, May 2010.

[9] J. Des Rivieres and J. Wiegand. Eclipse: A platform for inte-
grating development tools. IBM Systems Journal, 43(2):371-
383, 2004.

[10] N. Ducheneaut. Socialization in an open source software
community: a socio-technical analysis. Computer Supported
Cooperative Work, 14(4):323-368, 2005.

[11] R. Farzan, L. Dabbish, R. Kraut, and T. Postmes. Increasing
commitment to online communities via building social at-
tachment. In ACM 2011 Conference on Computer Supported
Cooperative Work, 321-330, ACM, March 2011.

[12] B. Fitzgerald. The transformation of open source software.
MIS Quarterly, 30(3):587-598, September 2006.

[13] K.Fogel. Producing open source software: how to run a
successful free software project, O'Reilly Media, Sebastapol,
California, 2005.

[14] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical cou-
pling based on product release history. In 14th IEEE Interna-
tional Conference on Software Maintenance, pages 190-198,
IEEE Press, March 1998.

[15] D. German. The evolution of the GNOME project. In 2nd
International Workshop on Open Source Software, 2002.

[16] D. German. The GNOME project: a case study of open
source, global software development. Software Process: Im-
provement and Practice, 8(4):201-215, 2003.

[17] git. the fast version control system: http://git-scm.com/

[18] G. Hertel, S. Niedner, S. Hermann. Motivation of software
developers in open source projects: an internet-based survey
of contributors to the Linux kernel. Research Policy,
23(7):1159-1177, July 2003.

[19] C. Jensen and W. Scacchi. Role migration and advancement
processes in OSSD projects: a comparative case study. In In-
ternational Conference on Software Engineering, pages 364-
374. IEEE, 2007.

[20] L. Katz, A new status index derived from sociometric analy-
sis. Psychometrika, 18(1):39-43, March 1953.

[21] S. Koch and G. Schneider. Effort, cooperation and coordina-
tion in an open source software project: GNOME. Informa-
tion Systems Journal, 12(1):27-42, January 2002.

[22] K. Lakhani and E. Von Hippel. How open source software
works: “free” user-to-user assistance. Research Policy,
32(6):923-943, June 2003.

[23] J. Lerner and J. Tirole. Some simple economics of open
source. Journal of Industrial Economics, 50(2):197-234,
June 2002.

[24] A. Meneely, L. Wililams, W. Snipes, and J. Osborne. Pre-
dicting failures with developer networks and social network
analysis. In 16th ACM SIGSOFT International Symposium on
the Foundations of Software Engineering, pages 12-23.
ACM, 2008.

[25] A. Mockus, R. Fielding, and J. Herbsleb. A case study of
open source software development: the Apache server. In
22nd International Conference on Software Engineering,
pages 263-272. ACM, 2000.

[26] A. Mockus, R. Fielding, and J. Herbsleb. Two case studies of
open source software development: Apache and Mozilla.
ACM Transactions Software Engineering Methodology,
11(3):309-346, July 2002.

[27] W. Oh and S. Jeon. Membership Herding and Network Sta-
bility in the Open Source Community: The Ising Perspective.
Management Science, 53(7):1068-1101, July 2007.

[28] W. Scacchi. Free/open source software development: recent
research results and emerging opportunities. In 6th Joint
Meeting on European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, pages 459-468. ACM, September 2007.

[29] G. von Krogh, S. Spaeth, and K. Lakhani. Community, join-
ing, and specialization in open source software innovation: a
case study. Research Policy, 32(7):1217-1241, July 2003.

[30] A. Wolfe. Eclipse: A platform becomes an open-source
woodstock. ACM Queue,1(8):14-16, 2003.

[31] B. Xu and D. R. Jones. Volunteers' participation in open
source software development: a study from the social-
relational perspective. ACM SIGMIS Database, 41(3):69-84,
August, 2010.

[32] Y. Ye and K. Kishida. Toward an understanding of the moti-
vation of open source software developers. In 25th Interna-
tional Conference on Software Engineering, pages 419- 429,
IEEE Computer Society, May 2003.

80

