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Abstract— Context: Software decay is a key concern for 
large, long-lived software projects. Systems degrade over time as 
design and implementation compromises and exceptions pile up. 

Goal: Quantify design decay and understand how software 
projects deal with this issue.  

Method: We conducted an empirical study on the presence 
and evolution of code smells, used as an indicator of design 
degradation in 220 open source projects.  

Results: The best approach to maintain the quality of a 
project is to spend time reducing both software defects (bugs) 
and design issues (refactoring). We found that design issues are 
frequently ignored in favor of fixing defects. We also found that 
design issues have a higher chance of being fixed in the early 
stages of a project, and that efforts to correct these stall as 
projects mature and the code base grows, leading to a build-up of 
problems.  

Conclusions: From studying a large set of open source 
projects, our research suggests that while core contributors tend 
to fix design issues more often than non-core contributors, there 
is no difference once the relative quantity of commits is 
accounted for. We also show that design issues tend to build up 
over time. 

Keywords— Software Decay, Design Problems, Project History.  

I. INTRODUCTION  
Software systems require constant modifications in the 

form of bug fixes and the addition of new features to satisfy 
end user needs. Failure to do so might lead to losing users or 
unsatisfied users [24, 4]. The pressure to keep growing and 
evolving the software often makes it impossible to refactor and 
redesign when a requirement changes. This eventually leads to 
decay in the software design and the growth of technical debt. 
One outcome of such decay is that code becomes more difficult 
to extend or understand [47], and as a result the ability to 
evolve an application tends to decrease over time [33].  

Design degradation leads to design debt, which contributes 
to technical debt [6] and negatively impacts the overall quality 
of the software. One of the symptoms of design degradation is 
that code structure drifts away from good object-oriented 
design principles (e.g. becomes too entangled and difficult to 
modularize). These bad design decisions leading to technical 
debt are also known as code smells [13]. This term was coined 
by Fowler and Beck [13], who gave an informal definition of 

22 code smells focused on the maintainability of software 
systems, and a set of indicators. Each code smell examines a 
specific kind of system element (e.g. classes or methods), 
which can be evaluated by its internal and external 
characteristics. Researchers have used code smells as a 
measurement of design degradation [7, 25, 39].  

In this paper we present the results of an empirical study on 
the presence and evolution of code smells, used as an indicator 
of design degradation. To the best of our knowledge, in 
contrast to previous studies [5, 22, 25, 38, 39, 42] ours is the 
largest study so far in terms of both the size of programs 
involved (534 to 100,000 lines), and the number of projects 
analyzed (220 open-source projects). This allows for stronger 
and more widely applicable conclusions about the evolution of 
design degradation and code smells. 

The goal of this study is to shed light on how design 
degradation happens as a project ages, and how traditional 
quality assurance (QA) activities contribute or fail to contribute 
towards improving design quality. More specifically we try to 
answer the following research questions: 
1. How code smells evolve over time? 
2. Is refactoring aimed at addressing technical debt 

dominated by specific sub-groups of developers? 
3. Does the testedness of a project and the quality of tests 

show a correlation with design quality? 
4. Is there a match between the smells discussed in literature 

and in tools and the smells projects most commonly 
struggle with? 

The reminder of the paper is organized as follows: We start 
with a review of research on design degradation and the 
techniques researchers have used to identify design 
degradation. Then we discuss how design degradation manifest 
in the form of code smells and the research related to code 
smells. Next we describe our methodology, filtering criteria 
and the demography of FOSS projects we studied. We also 
explain the tool selection and evaluation criteria. Section 4 
describes the results of our study. Section 5 discusses our 
findings, their implications and how they answer our research 
questions. Section 6 concludes with a summary of the key 
findings and future work. 

II. RELATED WORK 
The informal definition of design degradation provided by 

Martin states that as software evolves it starts to rot, like “a 
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piece of bad meat,” if dependencies among modules are not 
adequately managed [33]. This results in a code base that is 
difficult to maintain, reuse and add new features to.  

Researchers have come up with various techniques for 
identifying design degradation using static analysis techniques, 
where the degradation is assessed by analyzing single, static 
versions of software systems [7, 8, 25]. However, software 
repository mining provides a way to extract the historical 
evolution of a software system [20]. Researchers have also 
come up with techniques that rely on evaluation of successive 
versions of a software system [11, 21, 23] to identify design 
degradation as a process.  

Researchers have looked at the effect of software evolution 
on design quality. Izurieta et al. found that as systems mature, 
artifacts that do not have any role in the design pattern tend to 
build up around the pattern and accumulate, like “grime”, 
which eventually leads to design pattern decay [17]. Another 
facet of design degradation is design debt, which contributes to 
technical debt [6]. Design debt builds up as exceptions are 
made to speed up development, or we deal with edge cases in 
the development of a product. However, as this debt builds up, 
it may reach a level where interest payments in the form of 
difficulties in understanding and maintaining the code and as it 
deviates from design and documentation outweighs any short-
term benefits. Refactoring can be used to address this debt, 
revisiting exceptions and hacks made, and changing the 
underlying problem to create a more sustainable, and efficient 
design. Code smells have been used to measure design debt. 
For instance Zazworka et al. [47] found that the God class 
smell is related to technical debt.   

The concept of code smells was introduced by Fowler [13]. 
Code smells are symptoms of problems in source code, and 
indicators of where refactoring is needed [13]. Although design 
degradation and code smells are very similar, the distinction 
between the two is that code smells are defined at a higher 
level of abstraction and have a negative impact on a larger part 
of the software value than a localized piece of code. Code 
smells has been associated with bugs [25, 38] and code 
maintainability problems [13].  

The identification of code smells is typically done during 
development, testing, and maintenance. Many approaches have 
been proposed for code smell detection, such as metric based 
[23] and meta-model based [35]. Metric based measures show 
that code smells impact software quality [30]. Most of the code 
smell detection tools are based on metric analysis [23, 29]. 
This static analysis based approach has its drawbacks. Fowler 
and Beck claimed that “No set of metrics rivals informed 
human intuition” [13] when it comes to deciding whether an 
instance of a code smell should be refactored. Researchers 
have also categorized code smells based on their impact level 
or inter component relationship. Examples of such smells 
include the “Object oriented Abusers”, “Couplers”, and 
“Bloaters” [28, 32]. 

Several studies have looked into the relationship between 
code smells and change-proneness. Olbrich et al. [38] report 
that classes infected with the “God class” and “Shotgun 
surgery” smells are more change prone. Contrary to their 
finding, Schumacher et al. [42] found that the “God class” is 
only more change prone if results are not normalized by LOC. 

However, Khomh et al. [22] found that classes infected with 
code smells are changed more often overall. 

Identifying the impact of the code smells [38] and how 
these impact the understandability and maintainability of code 
[2, 10] has also been of interest to researchers. Smith et al. 
found that “God class” and “Switch statements” smells have an 
impact on software performance [44]. Prioritization of code 
smells has been identified as an important issue, as large 
numbers of warnings are often generated for a code-base. 
Fontana et al. [12] surveyed 6 code smell detection tools and 
found that none of these prioritized results. Many different 
ways of visualizing code smells have also been proposed [36]. 
Murphy et al. [36] identified some guidelines that could be 
useful to help developers prioritize code for refactoring. 

Understanding design degradation is important. 
Researchers have looked at how the testability of a system is 
impacted as design patterns decay over time. Izurieta et al. 
found that design pattern decay leads to reduced modularity, 
eventually increases the required number of test cases needed 
to meet test requirements [18]. They also found that design 
pattern decay leads to testing anti-patterns such as “concurrent-
user-relationship” and “self-use-relationship”. 

III. METHODOLOGY 

A. Project Selection Criteria 
We wanted to make sure that our findings would be 

representative of the code developed in real world. We decided 
to use Java as the language of focus. This decision was 
influenced by 2 factors: First, Java is one of the most popular 
languages (according to the number of projects hosted on 
Github and the Tiobe index1). The second was the availability 
of code smell detection tools for Java compared to other 
programming languages.  

We searched for projects in Github written in Java. We 
randomly selected 500 projects from this list. For ease of build 
and analysis, we only selected projects using the Maven [1] 
build system. 
 We checked for the distribution of commits across the 
history of the projects and found that the majority (95%) of 
projects had an active history of less than 200 weeks. Figure 1 
has the frequency distribution of commits over time for all 
projects. Because of the long tail property, we cut off analysis 
at 200 weeks in order to not skew our findings due to the 
skewing. 

 Our aim is to see how code smells evolve over time. To do 
so we could have used different ways of partitioning time. 
Some researchers [e.g. 17, 18] have chosen to use releases as 
the unit of time, others individual commits, or discrete time 
units (years, months, weeks, days). Though all of these 
approaches should lead to similar findings, the “resolution” 
may be different. Furthermore, none of these approaches lead 
to a true apples-to-apples comparison across projects. Projects 
work at different phases, projects are of different size, maturity 
level, and follow different release cycles and policies. 
Individual commits are the only “level” measure, but would be 
too fine grained for our purpose. We therefore selected the 

                                                           
1 http://tiobe.com/index.php/content/paperinfo/tpci/index.html 
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week as our unit of measure because, while subject to some 
variation from project to project, did give us fine-grained 
enough insight into the evolution of projects.     

 
Fig. 1.  Distribution of commits over time (vertical line indicating cutoff at 
200 weeks)   

 We removed projects that were too small, had very few 
files (< 10 files), or few lines of code (< 534 lines of code). 
This filtering was essential because we wanted make sure that 
the projects we are analyzing are not too small or too simple 
for real world projects. We also removed projects that had 
short lifespan (< 10 weeks) because such projects can skew the 
results. Our final data set contained 220 projects. Table I 
provides a summary of features and other descriptive 
information about the projects that were part of our study.  

TABLE I.  PROJECT STATISTICS 

Dimension Max Min Average Stddev 
Line count 116,238 534 5,837.00 14,511.73 
# Developers 105 4 10.78 11.04 
Total Code smells 260 1 15.57 30.27 
Duration (Weeks) 200 10 41.37 43.18 

 

 We also manually categorized the domain of the projects 
by looking at the project description and  using the categories 
used by Souza et al. [9]. Table II has the summary of the 
domains of the projects. In the next subsection, we discuss the 
code smell detection tools used. 

B. Tool selection 
We chose to use InFusion [16] to identify code smells 

because it has been found to identify the broadest set of smells 
[12]. Researchers have found that the metric-based approach 
identified by Marinescu [31] has the highest recall and 
precision (precision: 71%, recall: 100%) for finding most code 
smells [42].  InFusion uses this same principle and set of 
thresholds for identifying code smell, which was another 
reason for using InFusion.  

Our analysis depends on the smells identified by Infusion 
and we needed to have some level of confidence about the 
performance of the tool. There was no such evaluation 
available for InFusion, so we evaluated the smell detection 

performance of InFusion. We used the oracle constructed by 
Palomba et al [11]. Palomba et al. mentions that their oracle 
does not ensure completeness but it provides a degree of 
confidence about the correctness of the identified smell 
instances. In the oracle Divergent Change and Parallel 
Inheritance code smells are "intrinsically historical" and is not 
identified by InFusion. So we evaluated InFusion's 
performances by calculating precision (1) and recall (2) for 
identifying Blob and Feature Envy code smells from the oracle. 
We also report the F-measure (3), defined as the harmonic 
mean of precision and recall as an aggregate indicator of 
precision and recall [3]. Table IV has the summary of the 
performance of InFusion. 

TABLE II.  DISTRIBUTION OF PROJECTS BY DOMAIN  

Domain Percentage 
Development 61.98% 
System Administration 19.80% 
Communications 6.25% 
Business & Enterprise 3.12% 
Home & Education 3.12% 
Security & Utilities 2.61% 
Games 2.08% 
Audio & Video 1.04% 

TABLE III.  LIST  OF SMELLS IDENTIFIED BY INFUSION 

Smells 
Cyclic Dependencies 
Brain Method 
Data Class 
Feature Envy 
God Class 
Intensive Coupling 
Missing Template Method 
Refused Parent Bequest 
Sibling Duplication 
Shotgun Surgery 
SAPBreakers 
Internal Duplication  
External Duplication 
Blob Class 
Blob Operation 
Data Clumps 
Message Chains 
Distorted Hierarchy 
Schizophrenic Class 
Tradition Breaker 
Unstable Dependencies 
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TABLE IV.  INFUSION PERFORMANCE 

Precision Recall F-measure 
84% 100% 91.30% 

C. Data collection 
We selected data from the Git repositories of the 220 

projects, from the project start date until April 25th, 2013. We 
collected a total of 33,070 commits across the 220 projects. 
From the initial code commit, we calculated the code smells 
added or removed by each subsequent code commit to a 
project. For each commit we also calculated the number of 
modified lines.  

We categorized the code smells into broad categories, as 
suggested by the code smell literature [28]. These categories 
were: Bloater, Object oriented abusers, Coupler, Dispensable, 
Encapsulators and Others. Bloaters are code smells that lead 
the code to balloon so it cannot be effectively managed. The 
smells include data clumps, large class, long method, long 
parameter list and primitive obsession. Object oriented abusers 
are smells that do not fully exploit the advantages of object-
oriented design. Some of the smells include Switch statements, 
parallel inheritance hierarchies, and alternative classes with 
different interfaces. The Coupler category contains the code 
smells that identify high coupling between objects, in defiance 
of good object oriented design principles. Smells in this 
category include feature envy and inappropriate intimacy. The 
Dispensable category contains smells such as the lazy class, 
data class and duplicate codes. The Encapsulators category 
contains code smells that deal with the data communication 
mechanism or encapsulation. This includes message chain and 
middleman smells. Others is an aptly named catch-all category. 

We collected the total number of test cases present for each 
project after each code commit, an indicator of the testedness 
of the code. We also calculated the code coverage of the test 
suites. Coverage metrics such as statement coverage, branch 
coverage, path coverage etc are the indicators of quality of the 
test case [46]. We gathered different coverage metrics, such as 
statement coverage from Emma [45], branch coverage from 
Cobertura [26], path coverage from JMockit [40], and mutation 
kills from PIT [15]. Then we checked whether there is any 
difference between the low (less than 30%) and high (more 
than 60%) tested (measured using these coverage criteria) 
projects and total number of code smells present in the project. 

IV. RESULTS 
In the following section, the collected and observed results 

for the research questions stated above are presented. 

A. How code smells evolve over time 
 To answer our first research question we collected the total 
number of code smells after each commit. We normalized the 
smell count using feature scaling (4), which gives us a score 
between 0 and 1.  

min(x)max(x)
min(x)xvalueRescaled
−

−=    (4) 

 Previous studies have shown that normalizing the smell 
count using the project size reduces the bias of larger projects 

on the overall smell count [42]. For our study this was not 
necessary. Our aim was to identify general trends across 
projects, not to look at differences between them. There was 
therefore no need to normalize based on project size.  

We looked at the code smells change trend for each project. 
For this purpose we calculated the effect size of week on 
normalized smell count using a linear regression model, giving 
us how much smell count changed for each project per week. 
Then based on the effect size we categorized each project into 
one of three categories: increasing, decreasing or unchanged. If 
the effect was positive and larger than 0.005, we marked those 
projects as increasing. We selected 0.005 as our threshold 
because this indicates a change of less than or equal to a 0.5% 
of the number of smells, or at most 1 smell added or removed 
per week. For negative effect we applied the same threshold 
and marked the project as decreasing. Any other project was 
marked as unchanged. In Table V we report the percent of each 
of these category. We also checked whether the effect size of 
mean smell count change of increasing and decreasing groups 
are different. (Welch two-sample t-test, t = -2.1623, df = 
34.689, p-value = 0.02411), meaning that there is strong 
evidence that these two groups differ in their mean effect size.   

TABLE V.  PERCENTAGE OF DIFFERENT CODE SMELL CHANGE 
PATTERN 

Category Percentage 
Increasing 55.00% 
Decreasing 7.85% 
Unchanged 37.15% 

 

To have an understanding of the bigger picture we looked 
at the average number of smells across all projects, and found 
that it grows monotonically throughout 200 weeks. Figure 2 
shows the average project smelliness compared to the smelliest 
project in the sample.  

We also wanted to check whether this same trend holds true 
for all smell categories. We found that all smells in the Bloaters 
category (consisting of Blob Class which indicates classes that 
are very large and complex, Blob Operation which is a very 
large and complex operation and Data Clumps representing 
groups of data that appear together over and over again, as 
parameters that are passed to operations throughout the system) 
increase over time. 

We found that code smells in the Dispensables category 
had a mixed tendency; Data Classes code smell – which are 
data holders without complex functionality, but usually heavily 
relied upon by other classes in the system – increase over time. 
Internal and External Duplication – which identifies 
duplication between portions of the same class or module, and 
duplication between unrelated capsules of the system 
respectively, tend to increase slowly or even dip over time.  

We found that code smells in the OO abusers category 
follow a mixed pattern also. These include SABreakers, which 
looks for a mismatch between the subsystem's stability and its 
level of abstractness and the God class, indicating high 
complexity classes with a low inner-class cohesion and 
extensive access to the data of foreign classes. These two 
classes showed a generally growing pattern.  
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Fig. 2.  Week-wise average project smellines compared to the smelliest 
project  

 
Fig. 3.  Week-wise average project smellines compared to the smelliest 
project of bloater category 

 
Fig. 4.  Week-wise average project smellines compared to the smelliest 
project of Dispensables category 

The other OO abuser smells – the Schizophrenic class, a 
code smell that captures the scenario where a class has two or 
more key abstractions, the Refused Parent Bequest code smell 
– a sign of inheritance relation problems between parent and 
subclass, and the Distorted Hierarchy – indicative of the 
inheritance hierarchy being too deep, just like the Internal and 
External Duplication in Dispensables category, Sibling 
Duplication – indicative of duplication between siblings in an 
inheritance hierarchy, display a different growth pattern, with 
most of them plateauing relatively quickly. The Encapsulator 
category had too little data to give any meaningful insights. 

 
Fig. 5.  Week-wise average project smellines compared to the smelliest 
project of  OO abusers category 

We also found that in the Other category all smells (Cyclic 
Dependencies, Feature Envy, Shotgun Surgery, Tradition 
Breaker and Unstable Dependencies) have a tendency to 
increase over time, and Intensive Coupling shows an 
oscillating behavior.  

 
Fig. 6.  Week-wise average project smellines compared to the smelliest 
project of Other category 
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Fig. 7.  Breakdown of commits introducing(trend line on top) and 
removing(trend line on bottom) smells 

To gain a better understanding of how design issues evolve 
over time we classified all code commits into one of three 
categories; those that introduced at least one smell, those that 
removed at least one smell, and those that did not impact 
smells. We then calculated the percentage of commits that fell 
into each of these three categories over the life of the projects. 
Figure 7 shows that, as projects progress, the rate of smell 
introducing commits increases (the trend line on top). Smell 
reducing commits do increase over time, but not nearly as fast 
as the smell introducing commits (the trend line at the 
bottom). The grouping of dots around the 50 percent and 100 
percent markers are formed from the many projects that in any 
given week only see a small number of commits. The shaded 
band is the 95% confidence interval, indicating that there is 
95% confidence that the true regression line lies within the 
shaded region. 

B. Who takes care of smelly code? 

 
Fig. 8.  Origin of commits introducing or reducing code smells 

We found that less than 5% of commits removed smells, 
and that only 10% of the developers were responsible for 
those commits. Because we know that a typically small core 
development team is responsible for more than 80% of 
contributions in any open source project [34] we next needed 
to see if this group was also responsible for either the insertion 

or removal of code smells. For the purposes of our paper we 
defined the core contributors for each project as the top 
contributors who made 80% of the contributions in the project. 

As expected, core contributors, being responsible for the 
bulk of contributions, both introduce more smells and remove 
more smells than non-core contributors. We do however see 
that core contributors appear to remove more smells than they 
introduce, whereas the inverse is true for non-core contributors. 
However, we found that there is no statistically significant 
difference in terms of smell reducing commits and introducing 
commits for the core developers (Welch two-sample t-test, t = 
1.0733, df = 289, p-value = 0.284, Not Statistically 
Significant). The same was true for non-core contributors 
(Welch two-sample t-test, t = -0.9976, df = 180.74, p-value = 
0.3198, Not Statistically Significant). 

C. Does better testing lead to less smelly code? 
For each week in a project’s lifespan we calculated the 

number of test cases available, and the number of code smells 
in the code to check if there exists a correlation between them. 
We found that there is no statistically significant correlation 
between these two factors (Pearson Correlation Coefficient 
0.4051681). Figure 9 shows the trend line found after plotting 
the normalized total count of test case and code smell count for 
each week, for all projects. 

 
Fig. 9.  Comparison of Week-wise normalized total smell and test case count 

As test cases are not created equal, we also wanted to 
check whether there is a correlation between test coverage and 
smelliness of the project. We selected the last commit for each 
project and used the existing test suite for coverage analysis. 
Then for each code smell we checked whether there is any 
difference between the low  (less than 30%) and high (more 
than 60%) coverage (measured using statement, branch, path 
and mutation coverage criteria ) projects and number of code 
smells present in the project. We found that for External 
duplication (t = 2.166, df = 72, p-value = 0.03363, Statistically 
Significant) and Internal duplication (t = 2.4813, df = 72, p-
value = 0.01543, Statistically Significant), low and high 
coverage groups have statistically significant difference in 
number of code smells present in the project. 
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D. Literature v. real-life 
To answer our fourth research question we calculated the 

number of smells being introduced and removed by category. 
Our goal here was to determine if there was a good match 
between the practices and problems real programmers deal 
with, and the concerns of researchers. Figure 10 shows that, 
SAP Breakers, Data Class and Cyclic dependencies and 
Feature Envy were the most common smells, constituting 
almost 50% of the code smells being introduced and removed. 

 
Fig. 10.  Breakdown of smells introduced and removed  

Next we looked to the research literature to identify which 
code smells receive most attention from researchers. We used 
the work of Zhang et al. [48] and Sjoberg et al. [43]. Zhang et 
al. performed a systematic literature review on code smells 
published in IEEE and six leading software engineering 
journals from January 2000 to June 2009 [48]. They identified 
39 papers out of 319 papers that could answer the research 
question about which code smells receive most research. 
Sjoberg et al. expanded the analysis period from June 2009 to 
October 2011 and identified 10 additional papers. We ranked 
the smells based on percent of total smells and compared it 
against the ranking from the two survey papers. In Table VI we 
report the percent based ranking. 

TABLE VI.  COMPARISON  OF RANKINGS BASED ON OUR ANALYSIS AND  
THE NUMBER OF  RESEARCH  PAPERS DEALING  WITH A SMELL 

Smell From Projects From Literature  
Rank Freq. Rank Freq. 

Data Clumps 1 22.05 7 5 
Data Class 2 17.34 4  11 
Cyclic Dependencies 3 11.39 10  2 
Blob Operation 4 8.02 5  8 
Duplication 5 17.84 1  25 
Feature Envy 6 5.47 2  13 
SAP Breakers 7 4.79 8 5 
God Class 8 3.41 9 4 
Intensive Coupling 9 2.78 8  5 
Schizophrenic Class 10 1.99 8 5 
Blob Class 11 1.47 5 8 
Unstable Dependencies 12 1.27 8 5  
Tradition Breaker 13 1.00 8 5 
Refused Parent Bequest 15 0.64 3  12 
Message Chains 16 0.38 8 5 
Shotgun Surgery 17 0.16 6  8 
Distorted Hierarchy 18 0.00 8  5 
UnnecessaryCoupling 19 0.00 8 5 

V. DISCUSSION 
During our analysis we found that the overall number of 

smells increase over the life of open source projects, as shown 
in Figure 2. This is not to say that issues of design or technical 
debt are not addressed over the life of the project, but as Figure 
8 shows, it is simply a matter of new issues being introduced 
faster than old ones are resolved. More importantly, as is also 
evident from Figure 7, the pace of smell introduction 
accelerates over the life of the project. This could be an artifact 
of either projects adding new developers over time, thus having 
some of the initial core design knowledge watered down, or 
that as a project progresses and code builds up, it becomes 
increasingly difficult to unravel fundamental design revisions, 
or that an artifact of bad design decisions leading to further 
compromises. While further research would be needed to look 
into the nature of smells added and removed, we find it likely 
that there is an element of all three dynamics at play here.  

Next we looked at the types of design smells being 
introduced, and found two general patters; those smells that 
more or less monotonically increase over the life of the project, 
and those that plateau at some point (see Figures 3, 4, 5 and 6). 
For the monotonically increasing smells, the analysis seems 
straightforward; some mistakes are made throughout the life of 
the project, or some compromises in design breed other similar 
compromises to be made later in the code. Most likely though, 
these represent self-reinforcing patterns with projects; we’ve 
used this structure or technique elsewhere in our code, 
therefore it is OK to do so again. As a code-base grows, this 
can have serious consequences, as previous research has shown 
a correlation between smelly code and maintainability and 
bugs [13, 25, 38]. All code smells in the Bloating category 
show a growing tendency. This category is associated with 
centralized control structures in object-oriented languages. 
Arisholm et al. found that novice developers perform better 
with centralized control styles [2], it is therefore possible that 
novice contributors are pushing for these changes, or that they 
are being introduced by regulars to make it easier for 
newcomers to participate. Yamashita et al. found that a 
considerable portion (32%) of developers did not know about 
code smells [46] and only (4%) used specific code smell 
detection tools with refactoring tools to remove smells. This 
could explain the monotonic growth; once a smell is introduced 
is unlikely to be identified or fixed.  

The more interesting pattern is that of the smells that 
plateau, or even decrease after an initial spike, which included 
many of the smells in the OO Abusers category (Figure 5). 
These smells are indicative of poor and unsustainable designs. 
One possible interpretation of our findings is that they may 
represent acceptable compromises for prototyping and getting 
something out the door quickly, but that these design patterns 
likely present serious roadblocks to the future growth and 
success of the project. Developers facing such a situation are 
forced to refactor the code, and moreover, according to 
Yamashita et al., developers are more aware of this types of 
smells [46], which likely leads to increased refactoring. On the 
other hand, this pattern could just as easily be caused by 
projects making all the OO design decisions early in the 
projects lifecycle, with few if any such smells being added over 
time because no OO design changes take place.  
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The slow increase and then dipping pattern seen for internal 
and external duplication in the Dispensables category might be 
caused by developers working under constraints such as 
imposed deadlines or LOC-driven performance evaluations. 
Another reasonable circumstance where developers duplicate 
code is when they do not fully understand the problem or 
solution. Duplication becomes a safer way of modifying code 
rather than generalizing. As code-bases grow, it eventually 
becomes difficult to add new functionality, and developers are 
forced to refactor and remove duplication. Furthermore, 
developers are aware of code duplication and its consequences. 
Yamashita et al. found that duplicate code was the most 
mentioned code smell in their survey [46]. This can also 
explain why duplicate codes are refactored more often. We do 
not really have data to support this, and further research is 
needed to fully explain such trends.  

We also found that some smells are essentially added and 
removed on a near constant basis. In the Dispensables category 
for instance, the Data Classes code smell was already found by 
Khomh et al. as one of the most change prone code smells [22]. 
Possible reasons for such behavior is that coders are either 
unaware of the perils of this design pattern, or that when 
coding they do not realize when they are violating such design 
practices (disconnect between theoretical knowledge and 
practical), or that they fall into the trap of thinking that doing 
this once won’t make a difference.  

This to us is a clear sign that we need to do a better job 
integrating smell analysis either into IDE environments or into 
repository tools, not so much to block developers from using 
undesirable patterns, but rather as a way of giving developers 
feedback so they can reflect on the availability of better design 
patterns and how bad design decisions accumulate over time. 
We found that developers are not aggressively fixing design 
issues, which can be explained by the findings of Yamashita et 
al. who found that a considerable portion (32%) of surveyed 
developers did not know about code smells [46]. It is therefore 
conceivable that a majority of developers don’t actually know 
when they are making poor implementation decisions. It’s also 
obvious that these developers are unware of the issues such as 
bugs [25, 38] and code maintainability problems [13] are 
associated with code smells.  

When tools are used, these do not always provide great 
feedback for developers. Many of the tools we looked at give a 
large number of false positives, an inherit issue with any kind 
of static analysis tool [19]. Lack of visibility of the deduction 
rules and thresholds of the metrics and context awareness 
might be other reasons, as identified by Fontana et al. [12], 
why the developer community remains skeptical and 
uninterested in code smell analysis. Moreover, developers 
don’t want to have their workflow disrupted by tools that do 
not integrate well into their development process [19]. 
Moreover the current tools do not always align with the 
problems projects struggle with. All these factors along with 
developer unawareness about smells helps to explain why 
developers don’t use code smell detection tools and also helps 
to explain our observation why design issues build up over 
time. Further research should look at making these tools more 
accessible and relevant to real world programmers.  

We did find that core developers introduce both more 
smells and smell fixes than non-core developers, not an 
unexpected finding given core developers predominance in the 
world of coding. What was interesting though was that core 
developers were no more likely to fix code smells (in 
proportion to the size of their contributions) than non-core 
developers. This was a surprise to us, as we expected core 
developers to have a better understanding of both the 
software’s high-level design and of best coding practices. This 
turned out not to have a significant impact on the outcome of 
their coding. While difficult to interpret, this to us leads us to 
think that even among core contributors, understanding of 
high-level design tradeoffs and/or the time to refactor code 
may be in short supply. 

We also found that the number of test cases does not show 
any correlation with the design quality of the project. Although 
the quality of test cases works as an indication of how well the 
system is tested, it doesn’t give any indication about how bad 
design in the project is. Though this was expected, as test cases 
are written to identify bugs, not design issues, there was a 
possibility that testing could be part of a bigger refactoring and 
review process for code. Such activities would likely catch 
many of the code smells we were documenting in this study. 
We did not find evidence to support that testing indeed sparks 
or goes hand in hand with such review activities. 

We found that most of the code smells that were ranked 
high by our analysis were not highly ranked in the research 
literature (with the exception of duplication). While 
understandable to a certain extent, common problems are not 
always interesting problems, this shows a divide between the 
world of theoreticians and practitioners which may further 
drive the later away from the tools and practices we in 
academia try to promote. More attention should be paid 
towards analyzing the impact of high frequency real world 
smells and making the tools more efficient in identifying these. 
Alignment between the research and real world smell is 
necessary for making code smell analysis acceptable to 
everyone. 

VI. THREATS TO VALIDITY 
Our research findings may be subject to the concerns that 

we list below. We have taken all possible steps to neutralize 
the impacts of these possible threats, but some couldn’t be 
mitigated and it’s possible that our mitigation strategies may 
not have been effective. 

Our samples have been from a single source - Github. This 
may be a source of bias, and our findings may be limited to 
open source programs from Github. Github’s selection 
mechanisms favoring projects based on some unknown criteria 
may be another source of error. However, we believe that the 
large number of projects sampled more than adequately 
addresses this concern. 

 During our analysis we calculated the code smells 
after each commit and categorized the commits into three 
categories. There is always a chance that smells get introduced 
over multiple commits. Categorizing individual commits into 
these three categories poses the risk that, commits that actually 
contributed a major portion towards introducing the smell but 
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did not actually led to crossing the threshold value will not be 
identified as a smell introducing commit. Though this could 
add some noise to our data, overall the risk is negligible; 
eventually this threshold will be crossed and it will impact the 
average. Over a sample of 220 projects, chances are that these 
slight variations will have a relatively minor effect. 
For our analysis we had to categorize contributors into core 
and non-core contributors, for this categorization we had to set 
a threshold based on the number of commits for each 
contributor. It might be the case that some of the contributors 
that were categorized as non-core contributor based on our 
criteria were actually core contributors focusing on large 
contributions rather than frequent contributions, or simply 
focusing on architecture and high-level design (high value 
contributions).  

The smell detection tool we used uses a code metric and 
threshold-based detection strategy. These metrics and 
thresholds have been evaluated for their efficacy in a number 
of previous studies. However, it has not been evaluated 
whether their use is appropriate in all contexts. Hence, the 
precise metrics and thresholds that it is appropriate to use may 
vary depending on the context. We did not evaluate their 
efficacy for use in our study. Hence, it may well be that 
different metrics and values would have been more 
appropriate. Moreover the tool we used uses static code 
analysis to identify smells and research shows that code smells 
that are “intrinsically historical” such as Divergent Change, 
Shotgun Surgery and Parallel Inheritance are difficult to detect 
by just exploiting static source code analysis [11]. So the 
number occurrence of such "intrinsically historical" smells 
should be different when historical information based smell 
detection technique is used. 

VII. CONCLUSION AND FUTURE WORK 
In this paper, we have tried to develop an understanding of 

how design issues build up in an open source project over time, 
and whether this build-up can be effectively mitigated or 
controlled. We found strong evidence that design issues build 
up over time. As the project grows older and bigger, design 
issue are fixed less and as a consequence build up.  

As expected, core contributors, being responsible for the 
bulk of code contributions, were also responsible for the bulk 
of smells being introduced. Though they are also responsible 
for removing most of the smells that are removed, they were 
not significantly better at doing so than non-core contributors. 
This was surprising given core contributors’ deeper 
understanding of the project, and opportunity to remove smells 
through significant refactoring. This leads us to suspect that 
rather than due to a concerted effort, a large number of code 
smells must be removed accidentally or as part of ad-hoc code 
review. Further qualitative studies should provide insight and 
conclusive reasons behind the identified patterns.  

In line with previous observations, we also found that a 
project's testedness is not an indicator of design quality. 
Though this is not unexpected, it is another indicator that 
developers are paying more attention to removing and 
identifying bugs rather than refactoring. Current tool-sets and 
techniques are not tailored towards identifying design issues 

however, which may in part explain why these problems are 
difficult to tackle for projects.  

We also found that there is a mismatch between many of 
the most frequently occurring code smells and the most popular 
code smells in the research literature, with many of the 
common problems encountered in real life seeing relatively 
little research. More focus should be given to the code smells 
that occur frequently if we want to tackle the issue of technical 
debt in real-world projects.  

In our analysis, we didn't consider factors such as the 
number of contributors or the size of the project, which have 
been proven to contribute towards design issues. It would be 
interesting to do a large scale longitudinal study where all these 
factors are considered in the analysis to try to identify the 
relationship between these factors and code smells, and see if 
the resulting models are different from the models identified by 
analyzing single snapshots of the projects.  

Finally, we conclude by mentioning that our finding along 
with the findings of other researchers provides evidence for the 
theory that developers in general are not very conscious about 
fixing design issues. The researcher community should try to 
make this easier by improving tools, including a focus on the 
more common code smells, which are sometimes ignored in 
the research literature. 
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