
Cassandra: Proactive Conflict Minimization
through Optimized Task Scheduling

Bakhtiar Khan Kasi and Anita Sarma
Computer Science and Engineering Department

University of Nebraska-Lincoln
Lincoln, NE, USA

{bkasi, asarma}@cse.unl.edu

Abstract—Software conflicts arising because of conflicting
changes are a regular occurrence and delay projects. The main
precept of workspace awareness tools has been to identify
potential conflicts early, while changes are still small and easier
to resolve. However, in this approach conflicts still occur and
require developer time and effort to resolve. We present a novel
conflict minimization technique that proactively identifies
potential conflicts, encodes them as constraints, and solves the
constraint space to recommend a set of conflict-minimal
development paths for the team. Here we present a study of four
open source projects to characterize the distribution of conflicts
and their resolution efforts. We then explain our conflict
minimization technique and the design and implementation of
this technique in our prototype, Cassandra. We show that
Cassandra would have successfully avoided a majority of
conflicts in the four open source test subjects. We demonstrate
the efficiency of our approach by applying the technique to a
simulated set of scenarios with higher than normal incidence of
conflicts.

Index Terms—Collaborative development, coordination,
collaboration conflicts, task scheduling

I. INTRODUCTION
Conflicting changes in parallel software development occur

frequently despite advances in communication and coordina-
tion environments [1]–[3]. Conflicting changes typically occur
because of breakdowns in an understanding of how one’s work
fits with others’ changes. For example, two developers can edit
the same file concurrently (direct conflict) or an interface that
was presumed to be stable is changed without appropriate noti-
fications to developers using it (indirect conflict) [4]

The state of practice aims for conflict resolution. Configu-
ration management (CM) systems allow each individual to
check out files and work on their changes in local workspaces
that are periodically synchronized with the repository. While
such a loose synchronization protocol enables rapid parallel
development, it also allows developers to inadvertently make
conflicting changes. Automated diff and merge techniques[5]–
[7] help in resolving direct conflicts, but often require manual
intervention [3], [4], [8]. Resolution of indirect conflicts is not
currently supported.

Our analysis of four popular open source projects reveals
that conflicts are a regular occurrence. In the projects analyzed
merge conflicts ranged from 7.6% to 19.3%. Of the clean
merges 2.1% to 14.7% had build failures, and 5.6% to 35% of
correct builds incurred test failures. Resolving these conflicts
took substantial effort, typically spanning multiple days. In

sum, conflict resolution is costly [1], [9]–[13]: it delays the
project while developers backtrack to determine the reason(s)
for the conflict and find a resolution.

Research in coordination has focused on conflict mitiga-
tion, that is, identifying and notifying developers of potential
conflicts as they emerge. This allows developers to coordinate
to resolve potential conflicts early, while conflicts are still
small and easier to resolve. Workspace awareness tools moni-
tor changes at real time to notify developers of emerging direct
and indirect conflicts [4]. Tools such as FastDash [14], Syde
[15], and others [8], [16] largely support direct conflicts,
whereas tools like Palantír [4], Crystal [3], and CollabVS[17]
support both conflict types. While these tools are proactive in
identifying conflicts early, they are still reactive since conflict
resolution can only be performed post hoc - after the conflict
has already developed.

 To alleviate this situation, we present a novel conflict min-
imization technique that evaluates task constraints in a project
to recommend optimum task orders for each developer. A key
goal is to proactively determine conflicting tasks – tasks that
will conflict when performed in parallel and appropriately
schedule them to recommend conflict-free development paths.

Constructing a conflict avoidance task scheduler raises
many questions including: what are the different types of con-
straints in the context of parallel software development; how
can we prioritize constraints if all of them cannot be satisfied;
how can individual and overall team goals be reconciled; how
to provide guidance without overly restricting or overloading
users; and questions about scalability, and general effectiveness
of the approach.

In this paper, we provide a first exploration in answering
these questions through the implementation of our research
prototype, Cassandra. The specific contributions of this paper
include:
• Empirical analysis of four open source projects to identify

the distribution of different types of conflicts and the effort
needed to resolve them. Contrary to common belief that
higher order conflicts are harder to resolve, we found that
the resolution effort for direct and indirect conflict to be
comparable in some projects. Further, each project had a
different conflict profile, suggesting that there is no “one-
size fits all” analysis. To the best of our knowledge, ours is
the first study to characterize the resolution effort needed
for different types of conflicts.

• An implementation of a novel conflict minimization tech-
nique that formalizes a parallel software development con-
text – task dependencies, file dependencies, and developer

978-1-4673-3076-3/13/$31.00 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA732

preferences into constraints, and then solves these con-
straints to determine conflict-minimal development paths
for the team.

• Design and implementation of Cassandra, our research pro-
totype that implements the conflict minimization technique
to provide developers a recommended list of (conflict free)
tasks and the rationale for these recommendations in a con-
textualized manner.

• An extensive evaluation of Cassandra using data from sev-
eral open source projects, as well, as simulated data with a
much higher distribution of conflicts than typically found.

The rest of the paper is organized as follows: We present back-
ground on related work in Section II, followed by our empirical
analysis of open source projects in Section III. Section IV pre-
sents a motivating example followed by a discussion of our
approach in Section V. Implementation details are presented in
Section VI and our evaluation in Section VII. We discuss the
threats to validity in Section VIII and conclude with a brief
outlook into future work in Section IX.

II. RELATED WORK: CHANGE AWARENESS TOOLS
Many different kinds of conflicts can arise in parallel soft-

ware development when it is performed in distributed work-
spaces. The impact of each type of conflict and the effort to
resolve them vary.

Three major categories of conflicts exist. First, merge con-
flicts arising because of parallel changes to the same artifact.
We refer to them as direct conflicts. This type of conflict is
typically identified when a developer attempts to check-in their
changes while a newer version already exists in the repository.
Second, build failures arising because of parallel changes to
two different artifacts that cause syntactic mismatches and en-
suing compilation errors. Such conflicts are typically identified
during a system-wide build. Finally, test failures arising be-
cause of parallel changes to two different artifacts that cause
mismatches in program behavior. Such conflicts are only de-
tected during testing (integration) or may remain as defects.
Conflicts arising because of changes in one file affecting
changes in another are classified as indirect conflicts.

Research on change awareness attempts to alleviate the im-
pact of conflicts by informing developer of ongoing changes
that can potentially conflict. The primary goal is to provide
awareness: “an understanding of the activities of others, which
provides a context for your own activity [18]”, so that develop-
ers can proactively coordinate their work while conflicts are
still small and easier to resolve. Some examples tools are:

FastDash [14] provides a dashboard visualization that spa-
tially represents the files each developer in a team is editing.
Syde [15] also identifies merge conflicts, but reduces false pos-
itives via a fine-grained analysis of the abstract syntax trees
(ASTs) modifications. In addition to direct conflicts, Palantír
and CollabVS detect indirect conflicts when a user starts edit-
ing a program element that has a dependency on another pro-
gram element that is being edited in parallel [4], [17]. These
techniques all identify conflicts at a syntactic level (either AST
differences or static dependency changes).

SafeCommit [19] performs deeper program dependence
analysis by identifying changes that pass a given set of test
cases. The proposed technique identifies changes that are cov-
ered by original and edited test suites (either pass or fail) as

well as changes that do not have coverage, to identify changes
that may fail a given test suite. Crystal [3] leverages the infra-
structure provided by decentralized version control systems
(e.g., Git) and integrates (commits) local changes in a work-
space into a shadow repository and executes build and test
scripts to identify potential changes sets that will cause merge
conflicts or test or build failures. The paper also presents data
on the number of days it took to resolve merge conflicts.
Guimaraes et al [8] also use a shadow repository for merging
changes that are then analyzed, compiled, and tested to detect
(merge) conflicts. The above techniques depend on the exist-
ence of robust build scripts and test cases in the project.

III. CONFLICTS IN PRACTICE
Coordination breakdowns and ensuing conflicts occur fre-

quently [20]–[22]. Case studies have found that: parallel
changes are a leading cause of defects (one study in a tele-
communication system found 98 developers to be working in
parallel on the same artifact [21]), coordination issues in dis-
tributed development lead to code integration problems [23],
developers have difficulty in identifying their impact network –
changes that may impact them or changes that may be impact-
ed [24], and developers spend significant portion of their time
in coordinating their efforts [9], [20].

Studies of coordination failures have been largely qualita-
tive thus far [22], [25]–[27]. To the best of our knowledge there
are only two studies ([3], [13]) that quantitatively characterize
the distribution of conflicts: these studies found the frequency
of direct conflicts that required manual intervention to range
from 16% to 47% in several open source projects. Of the two
studies, one (Brun et al. [3]) investigated indirect conflicts.
They found that in the three open source projects studied, 33%
of the 399 merges that the version control system reported as
being a clean merge, resulted in an indirect (build or test) con-
flict. These studies do not report on the time taken to resolve
indirect conflicts

Empirical Study: We analyzed four open source projects
(see Table I) using similar techniques as Brun et al. [3]. Our
study is different since our primary goal is to analyze the dis-
tribution of conflicts to characterize the constraint space. To the
best of our knowledge we are the first to present resolution
effort data for each type of conflict across multiple projects.

We chose projects that are hosted in GitHub [28], based on
the following criteria: (1) popularity of the projects in GitHub,
(2) project activity: at least 20 developers and more than 500
changesets, (3) inclusion of built and test scripts in the reposi-
tory, and finally (5) the project is not a Git mirror of another
CM system repository, such as SVN.

We use version histories of the following projects:
• Perl: Programming language: Jun-2002 to Feb-2010
• Storm: Distributed real time computation system: Sep-2011

to Jun-2012
• Jenkins: Continuous integration server: Mar-2009 to Jun-

2012
• Voldemort: Distributed key-value storage system: Jun-2009

to Jun-2012
We downloaded the version histories of the above projects

in the specified time periods using our tool GitMiner [29],
which converts the version histories into a graph database
(Neo4J [30]). We use Gremlin[31] for traversal of the data.

733

We determine the following information: (1) the three basic
kinds of conflicts: merge, build, and test failures, (2) their fre-
quency, and (3) the number of days the conflict existed in the
repository, which serves as a measure of its resolution effort.

We identify conflicts in each project by recursively inte-
grating developer changes into a shadow master repository.
When using Git, developers fork the main repository to create
their own repository, which contains their working copy of the
code. Commits by each developer are logged as local commits
in their respective repositories. When a developer is ready to
share her changes with the team she can either send a “pull
request” or commit to the master repository. In performing our
analysis we make the following simplifying assumptions: (1)
each developer has only one repository, (2) developers create
local commits on finishing their tasks, and (3) developers fork
from; and commit to the master repository.

We recursively integrate changes into our shadow reposito-
ry based on the order in which these local commits appear in
the master repository, and progressively perform conflict anal-
ysis. That is, we first integrate local commits and if the Git
merge fails then we flag that merge as a failure. If the merge is
successful then we run build scripts on those “clean merges”; if
the build is successful then we run test cases.

Conflict resolution times are approximated as the number
of days between when a conflict first occurred and until when it
was resolved (i.e. the number of days the conflict persisted in
the master repository). We calculate this by tracking the num-
ber of changesets between a failed and successful event in the
repository. For example, if a build conflict is detected when a
developer merges her changeset, which she resolved in a sub-
sequent clean merge. We consider all changesets between these
two merges as the resolution effort. Here, we are assuming that
the set of changesets reflect the efforts of the developer in ex-
clusively resolving the conflict, which might not always be the
case in an open source project. This might make our effort es-
timation results an over-approximation.

Our analyses show that conflict occurrences are a norm
even in open source projects and occur irrespective of the size
of the project (KLOC) or the numbers of developers. Each pro-
ject exhibited different distribution of each type of conflict.
Merge conflicts ranged from 4.2% to 19.3%; build failures:
from 2.1% to 14.7%; and test failures: from 5.6% to 35%.

Further analysis of the conflict distribution shows activity
spurts: distinct periods of high levels of parallel activity and
conflicts followed by lower activity and conflicts (see Fig. 3).

The resolution times for different kinds of conflicts also
vary significantly across projects. For example, Perl experi-
enced the least number of merge conflicts (7.6% of total merg-
es of change sets), but these required long resolution times
(22.93 days average and a 10 days median). In comparison,

Storm had a high incidence of direct conflicts (19.3%) but re-
quired less resolution times (6 days average).

Our results provide two key insights: (1) project structures,
team policies, development practices play a role in conflicts
and their resolution, the interplay of which needs to be further
investigated, and (2) there is no ‘one-size-fits all’ conflict miti-
gation technique; analyses need to be fine-tuned per project.

We use the distribution of conflicts and the severity of each
type (based on resolution efforts) to guide our UnSAT heuris-
tics (see Section VI). They are also used to guide the task simu-
lation that we use for our evaluation (see Section VII)

IV. MOTIVATING EXAMPLE
In this section, we provide a highly simplified scenario that

we will use throughout the paper. Let us assume that Alice and
Bob are working on a hypothetical project (see Table II) in-
volving polygons, where classes Square.java, Rectangle.java,
and Triangle.java inherit from class Shape.java.

To plan for future additions of new shapes to the code base
Alice in task TA1 refactors Shape.java to combine two methods
for calculating areas into a single method by using a parameter
for the type of shape (s_type). She then updates existing meth-
ods in the project to reflect this change. Rectangle.java is the
only class affected, which she updates and commits.

Alice’s Workspace Bob’s Workspace

TA1

Shape.java
- area(float l, float w)
- area(float l)
+ area (float l, float w, s_type) TB1

Square.java
+ innerArea (float b)
+ shape.area(l)

Rectangle.java
- shape.area (l, w)
+ shape.area (l, w, s_type)

Rectangle.java
+ innerArea(float b)

TA2 + Canvas.java TB2 + Triangle.java
TA3 + Panel.java TB3 + Plot.java

Meanwhile, Bob in TB1 adds the functionality of calculating
the area without its border (innerArea) to Square.java and Rec-
tangle.java. These methods in turn call the respective methods
in Shape.area(). When committing his changes he faces a
merge conflict and realizes that his copy of Rectangle.java is
out of date and needs to be reconciled with changes in the re-
pository. He also faces a build failure for Square.java since he
used the earlier version of Shape.area(float), which now also
incudes the shape_type parameter.

In TB2, Bob creates a new class Triangle.java. Bob ensures
that he is calling the new Shape.area (float,float,Type) with the
shape_type parameter set as ‘T’. However, Alice did not create
functionalities for the area of a triangle in Shape.java, which
defaults the shape to a rectangle. Bob’s changes therefore lead
to a test failure.

Project KLOC #Developers #Changesets #Merges #Conflicts
Merge Build Test

#Conflicts Resolution Days
Average (Med) #Failures Resolution Days

Average (Med) # Failures Resolution Days
Average (Med)

Perl 2,213 51 23,079 185 74 (40%) 14 (7.6%) 22.93 (10) 4 (2.1%) 0.75 (0.75) 56 (30.2%) 30.5 (14)

Storm 60 24 975 88 39 (44%) 17 (19.3%) 6 (2) 9 (10.2%) 5 (8) 13 (14.7%) 7.9 (3)

Jenkins 565 100 14,627 505 204 (54%) 68 (13.5%) 26.51 (4) 74 (14.7%) 4.98 (2) 28 (5.6%) 6.9 (2)

Voldemort 171 33 3,026 380 170 (34%) 55 (14.5%) 20.14 (4) 16 (4.2%) 2.25 (0.75) 133 (35%) 6.01 (4)

TABLE I. SUBJECT (OPEN SOURCE) PROJECTS ANALYZED FROM GITHUB

TABLE II. TASK LIST FOR BOB AND ALICE

734

Alice’s task TA3 depends on task TA2, where class Panel ex-
tends from superclass Canvas. Thus there is a precedence of
task TA2 over TA3. For simplicity, we assume that Alice’s tasks
(TA2, TA3) are independent of Bob’s task (TB3).

Our goal is to schedule tasks for Alice and Bob such that
the conflicts in TA1, TB1 and TB2 can be avoided. For example if
Alice works on TA1 then Bob must work on TB3. However if
Bob decides to work on TB1 first, then Alice must work on TA2
followed by TA3.

V. CASSANDRA
We designed Cassandra, a novel task scheduling system

that aims to minimize conflicts by recommending task orders
that restrict dependent tasks or tasks that share common files
from being concurrently edited. When implementing Cassandra
we make the following design decisions:
• Proactive: A primary goal of Cassandra is to move from

reactive conflict mitigation to proactive conflict avoidance.
Conflict mitigation techniques help in identifying conflicts
early thereby allowing developers to resolve these conflicts
while they are still small. However, effort is still needed for
resolution. In prior work, we found that users of our work-
space awareness tool consistently took longer than the con-
trol group (without workspace awareness) [4]

• Granularity: Awareness tools typically provide change in-
formation at the file level. It is the responsibility of the de-
veloper to keep track of this information and relate it to
their current or future tasks. We, on the other hand, provide
information at the task level that parallels the developers
logical unit of work. Cassandra presents contextualized in-
formation of the rationale for its recommended task orders.

• Timeliness: A key principle of workspace awareness is to
keep users abreast of ongoing changes. Tools, therefore,
continuously “push” change information to the users’ work-
space, albeit in an unobtrusive manner. However, user ex-
periments have shown that developers actually note change
information at very specific points (e.g., check-in of change,
starting a new task, or taking a break) [32]. We, therefore,
update the user’s task view and re-evaluate the constraint
space when a developer completes her work, so that the in-
formation is ready when she is about to start her new task.

• Individual versus team strategy: Conflict resolution as well
as mitigation tools make the user responsible for coordinat-
ing and resolving conflicts. This can lead to individualistic
strategies, such as racing to finish one’s work or checking-
in unfinished code to avoid having to perform conflict reso-
lution [11]. We aim to reconcile these conflicting individual
and team goals by providing different heuristics for task
scheduling that can be guided by team policies.

The architecture of Cassandra is shown in Fig. 1. Grey compo-
nents represent generically available version control system,
issue tracker, and development editor that are used in a project.
Other components are implemented by Cassandra, and are ar-
chitecturally separated to allow extensibility. The Context Gen-
erator and Visualization components are implemented at the
client side, whereas the Task Scheduler and Internal Storage
component are centralized. We describe each of these compo-
nents below.

Context Generator: is implemented as a set of workspace
wrappers that track activities in the Eclipse workspace, events

from the Mylyn plugin [33], and CM operations. More specifi-
cally it logs the following activities: (1) workspace activities
such as save, open, etc., (2) Mylyn events, such as creating or
activating a task, selecting files for a particular task, and edit
and propagation events, (3) CM operations such as check-in,
check-out, update.

A primarily responsible of this component is to track the
development context of a task. We track three main context
factors: (1) task precedence – task dependencies created as a
result of functional dependencies, for example, in our scenario
class Triangle depends on the existence of parent class Shape,
(2) task dependencies – dependencies across tasks because of
the underlying program dependencies among files that are to be
modified in these tasks; and (3) developer preferences of the
ordering of their tasks. Currently, we track task precedence
information from the issue tracker (e.g., Bugzilla), and monitor
the IDE for the other two pieces of information.

Currently, we rely on the developers’ interactions with
Mylyn to identify the set of files (Fe) that they are going to edit
for a task. Once we have the Fe set, we perform a simple call-
graph analysis using a third party tool (Dependency Finder
[34]) to identify the set of dependent files (Fd). Note that here
we assume a team policy where developers when assigned a
task use Mylyn to identify the set of files that they intend to
modify (Fe). We note that this requires upfront developer effort
and might not be feasible in all development contexts. In the
future, we plan to use automated data mining and machine
learning techniques to mine similar past issues to predict re-
sources that are likely to be used for a current task. Such tech-
niques have been successfully applied in automated bug tri-
aging [35].

Any changes to the task context as a result of ongoing de-
velopment (new files added to the Fe set) as well as CM opera-
tions are communicated to the scheduler component and stored
in the Internal Storage component.

Visualization Component: is created as an Eclipse plugin
that modifies the task view of Mylyn to present the order of our
task recommendation. Our goal is not to restrict, but to guide
the user in choosing their next (optimum) task. We present the
rationale for our task recommendation as a popup linked from
the recommended task order number.

Task Scheduler: formalizes the task precedence, task de-
pendencies, and developer preferences into constraints. It pre-
processes the data to identify conflicting tasks, that is, if the
tasks share a common file (direct conflict) or require modifica-
tion of dependent files (indirect conflict), which are then for-
malized. If a constraint free solution exists, then it is optimized

Fig. 1. Cassandra Architecture.

735

to match developer preferences to the extent possible. If no
solution exists, then constraints are progressively relaxed until
a solution is achieved. We explain this component in detail in
the following section.

Internal Storage: maintains an overview of development
activities – recommended task orders, the particular task that
are being edited in a particular workspace and their resources.

It also tracks the number and type of conflicts that have
been predicted and those that have occurred in the project. Fi-
nally, it keeps track of other Cassandra events for bootstrapping
new or returning clients.
The architecture of Cassandra is explicitly designed to allow:
• Extensibility: Cassandra architecturally separates its main

components to enable easy plug and play. For example,
supporting a different IDE (e.g., Visual Studio) is possible
by simply changing the context generator. Similarly, incor-
porating a more sophisticated dependency analysis will only
require changes to the “Conflict Identifier” component of
the Task Scheduler.

• Flexibility: Different projects incur different frequencies of
conflicts and have different team policies. Cassandra there-
fore provides different heuristics that a team can choose for
relaxing constraints when conflict-free development paths
are not possible. These heuristics also help in reconciling
individual and team preferences.

VI. CONSTRAINT SOLVING AND TASK SCHEDULING
Constraint satisfaction is the process of finding a solution to

a set of constraints that impose conditions that a set of variables
must satisfy in a given domain. A constraint space can be ex-
pressed as a triplet !"# = (!,!,!), where values are selected
from a given finite domain (D) and assigned to each variable
(V), while ensuring that the given set of constraints (C) are
satisfied [36], [37]. Constraints can be of two types: (1) hard
constraints that must always hold true when arriving at a solu-
tion, and (2) soft constraints that can be relaxed if necessary.
Next, we discuss our formalization of the constraint space and
how we solve it.

Formalizing Constraints: Our goal is to identify a set of
task ordering from a given set of tasks in the project that satis-
fies the constraint sets in task assignments. For example, given
! developers and m tasks per developer in a team, T! =

{!!, !!,… , !!} is a set of tasks for developer a. The set of all
tasks is then T =∪!!!!! !!. The tasks for each developer are
ordered as a sequence, O! = !!!, !!!,…, !!! , which encodes a
permutation of T!. We write O![!] to denote the !!! task in the
sequence.

The constraints in the development context are formalized
as follows (see Fig. 2, where our example scenario is formal-
ized using Z3Py [38] notations). First, we formalize task prece-
dence relation, <, as hard constraints, since the implementation
of a task is functionally dependent on the completion of anoth-
er: ∀!!!!! !! ! < !! ! . In our example, Alice’s task TA2
(creating parent class Canvas) precedes TA3 (child class Panel)
(see Fig. 2, line #20)

Second, we need to identify those task dependencies that
will lead to a conflict if a set of tasks are concurrently executed.
The Fe (files to be edited) and Fd (dependent files) sets provid-
ed by the Context Generator are used by the Conflict Identifier
component (see Fig. 1) to detect potential conflicts. Potential
direct conflicts occur when task pairs include files that are
common in their Fe sets (!![!] ∩ !![!] ≠ ∅). Potential indirect
conflicts occur when dependent files of a task are modified by
another developer (F![!] ∩ F! ! ≠ ∅). We note that these are
currently simplistic measures. We plan to next use program
analysis techniques to create a more sophisticated conflict de-
tection algorithm. Also note, that at this stage, before tasks
have started we cannot not differentiate between tests and build
failures. Therefore, both are grouped as indirect conflicts.

In our example Alice and Bob’s tasks will result in direct
(Rectangle) and indirect (Square) conflicts:

 TA1: !! = {Rectangle, Shape}, !! = {Square}
 TB1: !! = {Rectangle, Square}, !! = {Shape}

After we have identified the conflicts, the Constraint For-
malizer component (see Fig. 1) encodes these constraints. We
use the relation: ! = T × T → {0,1} to define the existence of a
conflict between a pair of tasks. Given two developers, ! and b,
the ordering of their tasks must then be conflict free:
∀!!!!! ¬!(!! ! ,!! !) . We formalize conflicts (direct or
indirect) between a pair of tasks as a set of soft constraints that
discourages two tasks from being concurrently performed. In
our example scenario, Alice and Bob faced one direct and two
indirect conflicts (Fig. 2, line# 12-13), which are formalized as
soft constraints (lines# 15-20).

Next, developer preferences are formalized1, so that they
can be used to optimize the solution set (explained later). Other
implicit assumptions about the development context also need
to be explicitly encoded. For example, our recommended task
assignments should respect the actual developer task assign-
ments (i.e., Alice can only be assigned to her tasks: TA1, TA2 or
TA3, (Fig. 2: lines# 6-8). Similarly, we assume that a developer
performs only one task at a time (line 10)

Solving Constraints: Constraint satisfaction problems on
finite domains are typically solved using a form of search.
Popular techniques include variants of backtracking [39], con-
straint propagation [40], and local search [41]. Constraint satis-
faction problems (CSP) arise in different application areas in-
cluding software engineering (e.g., static program analysis,

1 formalization not shown here because of space constraints. See
source code: http://interaction.unl.edu/cassandra/resources Fig. 2. Z3Py Constraint Encoding of Example Scenario.

736

test-case generation, symbolic execution). A well-known CSP
is propositional satisfiability (SAT) that aims to determine
whether a formula comprising Boolean variables that are
formed by using logical connectives can be solved by choosing
true/false values for its variables. Often richer languages
(arithmetic or linear inequalities) better describe a given prob-
lem such as ours. Solvers for such formulations are called “sat-
isfiable modulo theories” or SMT solvers. Research on SMT
solvers has produced several robust tools (e.g. Barcelogic [42],
Yices [43] and Z3 [38]). These solvers have made checking
formulas with hundreds of thousands of variables tractable.

We decided to use Z3 as our SMT solver of choice, since it
is a generalized framework, is well supported, and well docu-
mented. Z3 allows constraints to be encoded via different pro-
gramming languages such as SCALA, C++, and Python. We
chose to use Python (Z3Py). The Constraint Formalizer com-
ponent encodes the development context into a Z3Py script (see
Fig. 2) to create the “SMT formula” where logical connectives
are combined with atomic formulas in the form of linear arith-
metic inequalities. The Z3 solver then solves this formula (see
Fig. 2, line# 22) to check for a satisfiable assignment, a map-
ping of task variables to the orders in which they should be
performed.

Optimizing Solution Space: Finding a conflict free order-
ing is not our only goal. We aim to determine the optimum
schedule, that is, if multiple conflict free development paths
exist we match our recommended task orders with developer
preferences to the extent possible. For an average problem
there may be multiple solutions. Selecting a solution that is best
suited to a problem requires traversal of the solution space [44].

We optimize the solution by first restricting the solution
space by implementing a cost function that evaluates the quali-
ty of the solution to an integer value (e.g., number of prefer-
ences violated). We progressively add these values as a set of
tighter constraints until we find the least cost solution (we use
half-interval search). In our example, our optimized solution
assigns Alice the following task order: (TA1, TA2, TA3), whereas
Bob is assigned: (TB3, TB2, TB1). This indicates that Alice can
follow her preferred sequence, whereas only one of Bob’s
“preferences” (TB2) is satisfied. This gives us an optimization
level of 4/6. An alternate satisfiable solution (among others) is
– Alice: (TA3, TA1, TA2) and Bob: (TB2, TB1, TB3) – satisfying
only1/6 preferences. Other sophisticated cost functions can be
easily implemented and plugged into our Optimizer component
(see Fig. 1).

Relaxing Constraints: If the development context is over
constrained, then the SMT formula is unsatisfiable (UnSAT).
This requires the identification of an UnSAT core—that is, a
small unsatisfiable subset of the formula’s clauses. Z3 returns
unsatisfiable constraints as an “unsat” core. However, the unsat
core is not minimal. An UnSAT core is minimal, if it becomes
satisfiable whenever any one of its clauses is removed. It is
always desirable to find a minimal UnSAT core because this
will ensure that relaxing the least number of constraints pro-
vides a solution. Algorithms for finding minimal sets are do-
main and context specific.

In the context of parallel, collaborative software develop-
ment, we identify four different approaches for relaxing con-
straint: (1) conflict focus that focuses on minimizing certain
types of conflict (e.g., avoid test failures at all costs), (2) team
focus that focuses on minimizing constraints for the entire team

as compared to per developer, (3) task focus that attempts to
relax constraints on the most constrained task or the reverse,
that is, not relax constraints on certain critical tasks, and (4) file
focus that prohibits relaxing constraints for critical files or en-
courages relaxing constraints based on files that are not
“prone” to defects. These heuristics are necessarily team spe-
cific and will be influenced by the conflict distribution and
resolution efforts in a project. Note, Cassandra is explicitly
designed to allow teams the flexibility to choose the heuristics
that best matches their need (or create new ones).

Here, we have implemented and evaluated two conflict-
focused UnSAT heuristics. We decided to first implement this
class of UnSAT heuristic since we only have conflict related
data from the version histories of our subject programs, which
allowed us to design and evaluate these heuristics. Information
needed for the other classes of heuristics (information on criti-
cal files, team policies, or high-priority tasks) were not readily
available to us.

The first conflict-focus heuristics (basic) favors indirect
conflicts over direct conflicts, since direct conflicts are always
flagged by the CM systems and can accurately localize the con-
flict. On the other hand, indirect conflicts are identified at a
much later time (either during a system build, integration test-
ing, or as defect), which makes localizing the cause of the con-
flict more difficult. Therefore, in this heuristic, if the UnSAT
core contains constraints related to direct conflicts they are first
relaxed.

Our second empirically guided approach prioritizes the dif-
ferent types of conflicts based on the effort it takes to resolve
each. For example, we found that in a project like Perl, test
failures are frequent (30.2%) and take longer time to fix (medi-
an of 14 days, see Table I). In this case, test-failure constraints
should be the last to be relaxed. However, in the case of Jen-
kins, direct conflicts occur frequently (13.5%) and take the
longest to resolve (median of 4 days). Therefore, in Jenkins
direct conflicts should be relaxed last.

Reevaluating Constraints: As development progresses new
constraints might be added, changing the satisfiability and
soundness of our solution. For example, a developer might edit
a different file than what we initially predicted. As changes
take place in the project, we can also better determine the seri-
ousness and probability of a conflict, which can guide con-
straint relaxation. Therefore, we need to reevaluate the con-
straint space periodically to ensure that satisfiability of the so-
lution is up-to-date. A primary factor for deciding when to re-
valuate the constraint space, is that developers cannot be asked
to change their current task because of changes in the develop-
ment context. Therefore, to avoid interruptions or disruption of
a developer’s task, we re-evaluate the constraint space, when a
developer has finished her changes. That is, we track commit
operations from the workspace, which triggers a reevaluation
of the constraint space. Therefore, by the time a developer is
ready to work on her new task we have reevaluated and updat-
ed the recommended task order, if needed.

The reevaluation of the constraint space takes place in a
matter of seconds. This reevaluation is computationally cheap-
er, since now we have to find a non-conflicting task for only
one developer, while the tasks for other developers are fixed.
Also (new) constraints are incrementally added so that the
solver can reuse its constraint decisions.

737

VII. EVALUATION
Here we aim to determine the feasibility of constructing a

conflict minimizing, task scheduler such as Cassandra. Our
evaluation goal, therefore, is to assess Cassandra’s success in
minimizing conflicts when given a development context with
software conflicts. We measure success as the number of con-
flicts avoided (effectiveness) and the time taken to arrive at an
optimized solution (efficiency).

We perform a set of controlled experiments by running
Cassandra on data from a set of four open source projects (see
Section III). We chose a range of time slices for our analysis:
weekly (w), monthly (m), quarterly (q) and 6-monthly (6m).
The development context from these time periods were then
encoded as constraints and solved. Note that in real life, such
analysis is likely to be performed at a daily or weekly basis.

We found that the changesets in these time periods were
functionally dependent and retrospectively changing their order
when integrating them into the master repository led to a dif-
ferent set of conflicts. These functional dependencies could
have arisen because of hidden task precedence conditions or
situations where developers, in addition to resolving conflicts
also changed code functionality. Since we do not have control
over these variables in our retrospective analysis, we stop after
arriving at optimized, satisfiable task orders and do not inte-
grate the changes (see Table III).

Our analysis shows that while the selected projects had sub-
stantial number of conflicts in total, their distribution is rela-
tively low when analyzed at weekly to quarterly basis. Fig. 3
shows conflict distribution data for Jenkins on a quarterly basis.
Therefore, to stress test the efficiency of our approach we use
data from one of the projects (Storm) and mutate it to induce
additional constraints (see Table IV).

All evaluation scenarios were evaluated on Z3 version 4.0
installed on a MacBook Pro 2.4 Ghz (Intel Core 2 Duo) with
4Gb of memory and running OSX 10.6.8.

A. Open Source Data Evaluation
We analyzed data from our test projects across different

time slices (weekly, monthly, quarterly, and 6-monthly). Table
III reports our evaluation results for all time intervals in Jenkins
data and a single time interval for the other projects. Jenkins
had the highest number of merges (505 merges, 100 develop-
ers) so we started our analysis with this project. We found that
the conflict scenarios for shorter time intervals (w, m, q) were
relatively trivial for Z3 to solve; therefore, here we only show
6-month time period analyses for Perl (185 merges, 51 devel-
opers) and Voldemort (380 merges, 33 developers). We ana-
lyzed the entire project history of Storm since it had only 88
merges and 24 developers.

For each time interval (w, m, q, 6m) in the project, we ana-
lyze the data and select a time period that is representative of
that time interval. For each time interval, we select two time
periods: one with an average number of conflicts and the other
with a high number of conflicts (75% quartile). From each of
these chosen periods, we extract the task scenarios: (1) the
number of developers, (2) the number of changesets (tasks) and
the files involved in that changeset, (3) the developers who
committed these tasks, and (4) the number and types of con-
flicts along with affected resources. An example scenario is: a
build conflict developed between changesets TA1 and TB1,
which included resources Shape.java and Square.java, and
were committed by Alice and Bob respectively. Since conflicts
are identified through a retrospective analysis, and for the build
failure to occur changes by Alice had to precede that of Bob,
we encode this conflict as a < precedence relation. Test failures
are similar and are treated as such.

Table III presents an overview of our results. We find that
the “average” conflict periods in Jenkins had low conflict in-
stances (ranging from 1-12) for all time intervals (w, m, q, 6m).
Finding a satisfiable (unoptimized) solution was trivial for the-
se scenarios (5.6s was the longest time for 6m). For the “high”
periods, conflict numbers ranged from 6-34 and the longest

 Jenkins Perl Voldemort Storm
 Week Month Quarter 6 Months 6 Months 6 Months Complete
 Avg. High Avg. High Avg. High Avg. High Avg. High Avg. High

Date Range 3/28/11
4/3/11

12/6/10
12/12/10 06/11 02/12 04/12

06/12
10/10
12/10

01/11
06/11

01/12
06/12

04/02
09/02

10/09
03/10

01/10
06/10 04/11 09/11 09/11

06/12
Developers 24 8 8 16 24 12 38 48 59 22 14 8 20
Avg. # Tasks 7 1 4 2 3 4 5 5 7 2 6 10 8
Avg. # Files 3 5 4 3 4 9 4 4 4 3 4 8 6
Changesets 11 30 32 75 49 203 258 384 50 135 78 167 171
Merge Failures 1 6 1 8 6 21 12 34 1 2 9 15 18
Build Failures 1 5 3 7 3 20 17 37 1 2 0 4 9
Test Failures 0 1 1 2 2 7 6 12 2 22 21 29 13
Direct Conflicts 1 6 1 8 6 21 12 34 1 2 9 15 18
Indirect Conflicts 1 6 4 9 5 27 23 49 3 24 21 33 22
Is SAT? UnSAT SAT UnSAT UnSAT SAT UnSAT UnSAT UnSAT SAT UnSAT SAT SAT UnSAT
DC Relaxed 1 - 0 0 - 0 0 0 - 0 - - 0
IC Relaxed 0 - 1 1 - 2 2 2 - 1 - - 4
Conflicts Avoided 1/2 - 4/5 16/17 - 46/48 33/35 81/83 - 25/26 - - 36/40
% Pref. Matched 63.64 36.67 46.88 33.33 22.45 23.15 15.12 13.80 44.00 51.11 7.69 10.78 12.87
CPU Time 0.211 0.219 0.224 0.484 0.304 2.881 5.617 16.651 0.307 0.64 0.532 1.162 9.076
Optimization Time out % Pref. Matched 90.91 93.33 87.50 84.00 85.71 87.19 96.00 94.07 94.87 80.84 78.95
CPU Time (sec) 0.235 0.773 0.698 3.052 1.821 1.827 1.084 15.06 6.684 111.593 126.228

TABLE III. EVALUATION RESULTS FOR OPEN SOURCE PROJECTS

738

time to reach a solution was 16.65s, indicating that solving
conflict constraints using our approach encoded in Z3 is trivial.

Cassandra also avoided a majority of conflicts in these sce-
narios. Perl, Voldemort, and Storm have similar characteristics.

When we attempt to optimize task orders to match develop-
er preferences (the order in which tasks appeared per developer
was treated as their preference order), we find that the time
required to attain a solution increases. In fact, finding an opti-
mized task order for the 6m periods in Jenkins took longer than
3 minutes. We used a threshold of 3 minutes to terminate our
analysis, since a delay of 3 minutes or more is sufficiently long
to be considered disruptive by end users and can potentially
frustrate them. However, note that this time period had a large
changeset (258 and 384 for “average” and “high” activity peri-
ods). It is highly unlikely that a team will need to schedule such
a large number of tasks. We note that our optimization matches
developer preferences to a large extent (78.95% - 96%).

In situations where the development context was unsatisfia-
ble, the UnSAT core was small (largest set being 4 for Storm).

Interestingly, all UnSAT cores only had a single type of con-
flict. Since these UnSAT cores were small and had a single
conflict type, both heuristics for relaxing constraints evaluated
to be the same. We only show results of the basic UnSAT heu-
ristic in Table III.

B. Task Simulation
Here we test Cassandra and its efficiency in simulated task

contexts with high numbers of constraints. We do so by simu-
lating constrained tasks by mutating the data of one of our test
subjects. We choose Storm as our subject since it is a small
project and had the least skew in its development activity (see
Fig. 3 (b)). The mutation is performed by a Task Generator
component that first creates a distribution of the changesets and
conflicts for the entire project history. It then identifies the sta-
tistics (mean, sd) of the conflict distribution for each time in-
terval (w, m, q, 6m). It then uses this data to create a normal
distribution from where it randomly creates three scenarios for
each time interval. These scenarios include low (25% quartile),
average, and high (75% quartile) numbers of conflicts.

TABLE IV. EVALUATION RESULT S FOR TASK GENERATOR

 Task Generator Scenarios
 Week Month Quarter 6 Months

 Low High Avg. Low High Avg. Low High Avg. Low High Avg.
Developers 3 3 3 2 8 6 6 5 3 5 13 5
Avg. # Tasks 4 5 4 6 6 6 8 8 9 8 8 8
Avg. # Files 4 3 3 3 5 3 3 3 3 3 4 3
Changesets 14 15 12 12 50 36 50 41 27 42 105 42
Merge Failures 0 1 0 0 21 10 8 8 4 7 79 9
Build Failures 0 4 0 2 21 4 9 31 11 6 14 38
Test Failures 2 2 2 3 2 1 26 44 15 60 142 54
Direct Conflicts 0 1 0 0 21 10 8 8 4 7 79 9
Indirect Conflicts 2 6 2 5 23 5 35 75 26 66 156 92
Is SAT? SAT SAT SAT SAT SAT SAT SAT UnSAT UnSAT UnSAT UnSAT UnSAT
Basic
DC Relaxed - - - - - - - 2 2 1 23 1
IC Relaxed - - - - - - - 58 23 40 121 66
Runs 3 2 3 11 3
Conflicts Avoided - - - - - - - 23/83 5/30 32/73 91/235 34/101
Empirically Guided
DC Relaxed - - - - - - - 3 2 25 57 5
IC Relaxed - - - - - - - 28 15 35 82 27
Runs 8 3 6 5 8
Conflicts Avoided - - - - - - - 52/83 13/30 13/73 96/235 69/101
% Pref. Matched 7.1 20.0 33.3 16.7 8.0 11.1 12.0 7.3 18.5 9.5 16.2 11.9
CPU Time 0.133 0.143 0.125 0.141 0.326 0.231 0.342 1.104 1.658 0.99 10.792 1.495
Optimization

48.0
12.961

82.9

11.618

 % Pref. Matched 85.7 66.7 66.7 66.7 60.0 83.3 85.2 54.8 16.4 50.0
CPU Time (sec) 0.355 0.346 0.259 0.354 4.466 1.158 51.973 10.644 156.33 13.339

Fig. 3. Conflict Distribution in projects (a) Jenkins - Quarterly, (b) Storm - Monthly.

(a) (b)

739

The scenarios are encoded by the Constraint Formalizer and
solved (see Table IV). As we can see the number of conflicts in
each scenario is much higher than previously observed, espe-
cially for the “high” conditions. However, despite these high
numbers of conflicts, the weekly and monthly data were SAT,
taking only seconds to complete; 0.33s was the longest for the
“high” monthly condition. Most scenarios for the quarterly and
6-monthly period had UnSAT cores. Cassandra identified op-
timized solutions much quicker than in the previous evaluation.
However, because of the higher number of conflicts finding
task orders that match developer preferences was more difficult
(16.4% to 85.7%). Note that the high, 6m periods has the low-
est preference matching (16.4%), but faces 235 conflicts.

As expected, the large number of conflicts in these scenari-
os causes Z3 to return larger UnSAT cores. Table III presents
the results from our two UnSAT heuristics. Note that finding
the minimal UnSAT core takes several iterations (#Runs). A
set of conflicts is released at each iteration based on the Un-
SAT heuristic used, after which the solver reevaluates the rest
of the constraint space. This process continues until a satisfia-
ble solution is reached.

Note that of the two approaches, the Empirically Guided
approach performs better when we compare the number of con-
flicts avoided. This is so, since in Storm merge conflicts had
the highest incidence, followed by test failures and then by
build failures. In the Empirically Guided approach constraints
are relaxed in the reverse order. Whereas, in the Basic approach
direct conflicts are first relaxed, followed by build and then by
test failures. This shows that different heuristics can affect the
quality of a solution. Also note, that currently we relax all con-
straints of a particular type at every iteration; we can further
refine the process to select a subset of a type of conflict from
the UnSAT core. Despite, the high number of conflicts and
higher number of iterations required for relaxing constraints,
solutions were still found quickly (156.33s was the longest time
needed for the “high” 6m period).

VIII. THREATS TO VALIDITY
Our empirical analyses and evaluations naturally leave open

a set of potential threats to validity, which we explain here:
Construct: We use version histories of open source projects

to identify conflicts and when they were resolved. When per-
forming this analysis we have assumed: (1) each developer
only has a single line of development that is regularly synchro-
nized with the master repository, (2) if a developer faced a con-
flict then she exclusively worked to resolve that conflict
(merge, build, test) in subsequent merges until the conflict was
resolved, and (3) build and test scripts available in the version-
ing history repository are robust and have good coverage.

Internal: When scheduling tasks with Cassandra we as-
sumed that all tasks were of equal length and functionally inde-
pendent, allowing them to be reordered. Based on this infor-
mation, we predicted the number of conflicts Cassandra could
have avoided. However, this was clearly not the case, which
precluded us from being able to retrospectively integrate
changes based on our (reordered) task orders. The main goal of
this paper was to determine the feasibility of constructing Cas-
sandra; future studies will analyze current task contexts of
teams.

External: Our retrospective studies only focused on four
open source projects hosted on GitHub. While, we ensured that
we chose projects that were popular, had high parallel activity,
and included conflicts, they might not be representative of oth-
er projects. Moreover, these are open source projects where
contribution is voluntary and a small group performs the major-
ity of work. Commercial projects will have different character-
istics. However, studies have shown that such projects have
higher number of parallel changes and conflicts, which sug-
gests that Cassandra will be even more useful in such settings.

IX. CONCLUSIONS
Collaborative software development allows developers to

work in parallel, which can result in software conflicts. Such
conflicts are a norm rather an exception; even in open source
projects where developers often contribute in their spare time
and the majority of work is performed by a small core group.
We analyzed four popular open-source projects and more than
one year’s worth of data per project. We found that all projects
faced substantial number of conflicts (ranging from 34% to
54%) and required resolution times spanning multiple days.
Moreover, each project had different distributions of different
types of conflicts and different resolution times for each con-
flict type.

Given that conflicts are bound to occur in any collaborative
development scenario and their resolution takes time, even
when detected early, we present a novel conflict minimization
technique. This technique implemented in our research proto-
type Cassandra proactively identifies conflicts and other con-
straints in a development context to determine task orders that
will avoid the incidence of conflicts. We evaluated the feasibil-
ity of constructing a system such as Cassandra by evaluating its
scheduler on data from four open source projects. Our results
show that Cassandra is able to solve a large set of constraints
and able to avoid the majority of conflicts (that were identified
in our retrospective analysis).

This work was a first exploration in constructing a system
such as Cassandra. There are several possible directions for
enhancements. First, we will explore automated data mining
and machine learning techniques to automate the context gen-
eration, so that we can provide an initial set of resources to be
edited per task, which the user can then refine. Second, we will
explore program dependency analyses to refine our conflict
identification technique. Finally, we will implement other Un-
SAT heuristics (task, file, team focused). We will perform
qualitative studies, including surveys of development teams to
guide the heuristic implementation.

ACKNOWLEDGMENT
We thank Matthew Dwyer for his guidance on constraint

solving. We thank Patrick Wagstrom and Corey Jergensen for
the GitMiner tool. This research is supported by grants NSF-
0414698, 1016134 and AFSOR FA9550-09-1-0129.

REFERENCES
[1] D. E. Perry, H. P. Siy, and L. G. Votta, “Parallel Changes in

Large-Scale Software Development: An Observational Case
Study,” ACM Trans. Softw. Eng. Methodol., vol. 10, pp. 308–
337, 2001.

740

[2] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Min-
ing Version Histories to Guide Software Changes,” 26th In-
ternational Conf. on Software Eng., pp. 563–572, 2004.

[3] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive
detection of collaboration conflicts,” 19th ACM SIGSOFT
symposium, pp. 168–178, 2011.

[4] A. Sarma, Z. Noroozi, and A. van der Hoek, “Palantír: Raising
Awareness among Configuration Management Workspaces,”
25th International Conf. on Soft. Eng., pp. 444–454, 2003.

[5] R. Conradi and B. Westfechtel, “Version Models for Software
Configuration Management,” ACM Computing Surveys, vol.
30, pp. 232–282, 1998.

[6] J. Estublier and S. Garcia, “Process Model and Awareness in
SCM,” 12th International Workshop on Software Configura-
tion Management, pp. 69–84, 2005.

[7] T. Mens, “A State-of-the-Art Survey on Software Merging,”
IEEE Trans. on Software Eng., vol. 28, pp. 449–462, 2002.

[8] M. L. Guimaraes, “Improving Early Detection of Software
Merge Conflicts,” 2012 International Conference on Software
Engineering, pp. 342–352, 2012.

[9] C. R. B. de Souza, D. Redmiles, and P. Dourish, “‘Breaking
the Code’, Moving between Private and Public Work in Col-
laborative Software Development,” International ACM SIG-
GROUP Conf. Supporting Group Work, pp. 105–114, 2003.

[10] P. Dewan, “Dimensions of Tools for Detecting Software Con-
flicts,” 2008 International Workshop on Recommendation Sys-
tems for Software Eng., pp. 21–25, 2008.

[11] R. E. Grinter, “Using a Configuration Management Tool to
Coordinate Software Development,” Conference on Organiza-
tional Computing Sys, pp. 168–177, 1995.

[12] D. K. Shao, “Evaluation of Semantic Interference Detection in
Parallel Changes: an Exploratory Experiment,” 23rd IEEE In-
ternational Conf. on Soft. Mainten., pp. 74–83, 2007.

[13] T. Zimmermann, “Mining Workspace Updates in CVS,” 4th
International Workshop on Mining Soft. Repos., p. 11, 2007.

[14] J. Biehl, M. Czerwinski, G. Smith, and G. Robertson, “FAST-
Dash: A Visual Dashboard for Fostering Awareness in Soft-
ware Teams,” SIGCHI Conference on Human Factors in
Computing Systems, pp. 1313–1322, 2007.

[15] L. Hattori and M. Lanza, “Syde: A Tool for Collaborative
Software Development,” 32nd ACM/IEEE International Conf.
on Software Eng., vol. 2, pp. 235 –238, 2010.

[16] C. O’Reilly, P. Morrow, and D. Bustard, “Improving Conflict
Detection in Optimistic Concurrency Control Models,” 2001
ICSE Workshops on SCM, pp. 191–205, 2003.

[17] P. Dewan and R. Hegde, “Semi-Synchronous Conflict Detec-
tion and Resolution in Asynchronous Software Development,”
10th European Conference on Computer-Supported Coopera-
tive Work, pp. 159–178, 2007.

[18] P. Dourish and V. Bellotti, “Awareness and Coordination in
Shared Workspaces,” ACM Conference on Computer-
Supported Cooperative Work, pp. 107–114, 1992.

[19] J. Wloka, B. Ryder, F. Tip, and X. Ren, “Safe-commit analysis
to facilitate team software development,” 31st International
Conf. on Software Eng., pp. 507–517, 2009.

[20] J. M. Costa, M. Cataldo, and C. R. de Souza, “The Scale and
Evolution of Coordination Needs in Large-Scale Distributed
Projects: Implications for the Future Generation of Collabora-
tive Tools,” SIGCHI Conference on Human Factors in Com-
puting Systems, pp. 3151–3160, 2011.

[21] D. E. Perry, H. P. Siy, and L. G. Votta, “Parallel Changes in
Large-Scale Software Development: An Observational Case
Study,” ACM Trans. Softw. Eng. Methodol., vol. 10, no. 3, pp.
308–337, Jul. 2001.

[22] C. R. B. de Souza and D. Redmiles, “An Empirical Study of
Software Developers’ Management of Dependencies and
Changes,” 30th Intern. conf. on Soft Eng., pp. 241–250, 2008.

[23] R. E. Grinter, “Recomposition: Putting It All Back Together
Again,” 1998 ACM Conference on Computer Supported Co-
operative Work, pp. 393–402, 1998.

[24] C. R. B. de Souza and D. Redmiles, “The Awareness Network:
Should I Display My Actions to Whom? and, Whose Actions
Should I Monitor?,” IEEE Trans. Softw. Eng., vol. 37, no. 3,
pp. 325–340, 2011.

[25] B. Curtis, “Insights from Empirical Studies of the Software
Design Process,” Future Generation Computer Systems, vol.
7, pp. 139–149, 1992.

[26] J. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter, “An
Empirical Study of Global Software Development: Distance
and Speed,” 23rd Intern. Conf. on Soft. Eng., pp. 81–90, 2001.

[27] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter,
“Distance, Dependencies, and Delay in a Global Collabora-
tion,” 2000 ACM Conference on Computer Supported Coop-
erative Work, pp. 319–328, 2000.

[28] GitHub, “Social Coding: Building Software Together.”
[Online]. Available: https://github.com/.

[29] “Java based tools for extracting information from GitHub.”
[Online]. Available: https://github.com/pridkett/gitminer.

[30] “The World’s Leading Graph Database.” [Online]. Available:
http://neo4j.org/.

[31] “A graph traversal language.” [Online]. Available:
https://github.com/tinkerpop/gremlin/.

[32] A. Sarma, D. Redmiles, and A. van der Hoek, “Palantír: Early
Detection of Development Conflicts Arising from Parallel
Code Changes,” IEEE Transactions on Software Engineering,
vol. 38, no. 4, pp. 889–908, Aug. 2011.

[33] M. Kersten and G. C. Murphy, “Mylar: A Degree-of-Interest
Model for IDEs,” 4th International Conference on Aspect-
Oriented Software Development, pp. 159–168, 2005.

[34] SourceForge.net, “Dependency Finder.” [Online]. Available:
http://depfind.sourceforge.net/.

[35] J. Anvik and G. C. Murphy, “Reducing the Effort of Bug Re-
port Triage: Recommenders for Development-Oriented Deci-
sions,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 3, arti-
cle 10, pp. 1–35, 2011.

[36] S. C. Brailsford, C. N. Potts, and B. M. Smith, “Constraint
Satisfaction Problems: Algorithms and Applications,” Euro-
pean Journal of Operational Research, vol. 119, no. 3, pp.
557–581, Dec. 1999.

[37] V. Kumar, “Algorithms for Constraint Satisfaction Problems  :
A Survey,” AI Magazine, vol. 13, no. 1, pp. 32–44, 1992.

[38] L. De Moura and N. Bjørner, “Z3: An Efficient SMT Solver,”
Theory and Practice of Software, pp. 337–340, 2008.

[39] R. Dechter and D. Frost, “Backtracking Algorithms for Con-
straint Satisfaction Problems,” UCI Technical Report, 1999.

[40] R. Barták, “Theory and Practice of Constraint Propagation,”
3rd Workshop Constraint Prog. Deci. Cntrl, pp. 7–14, 2001.

[41] N. Jussien and O. Lhomme, “Local Search with Constraint
Propagation and Conflict-Based Heuristics,” Artificial Intelli-
gence, vol. 139, no. 1, pp. 21–45, 2002.

[42] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-
Carbonell, and A. Rubio, “The Barcelogic SMT Solver,” 20th
International Conf. on Comp. Aided Verif., pp. 294–298, 2008.

[43] B. Dutertre and L. De Moura, “The Yices SMT Solver,” Tool
paper at http://yices.csl.sri. com/tool-paper.pdf, 2006.

[44] R. Nieuwenhuis and A. Oliveras, “On SAT Modulo Theories
and Optimization Problems,” Theory and Applications of Sat-
isfiability Testing, vol. 4121, pp. 156–169, 2006.

741

