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In this paper, we present Dominoes, an approach for analyzing software repositories with thousands 
of artifacts by considering multiple perspectives of the software development data. In order to 
achieve computational power we model the data and its relationships as matrices, making possible to 
efficiently process them with a GPUs (Graphics Processing Unit) based architectures. Dominoes can 
support automated exploration of different relationships among project artifacts, where users have 
the flexibility to interactively combine and compose them. Our solution organizes data extracted 
from software repositories into multiple matrices that can be treated as domino pieces (e.g., 
[commit|method]). The connection of such pieces corresponds to a set of matrices operations, which 
derive additional domino pieces. These derived domino pieces represent specific project entity 
relationships (e.g., number of commits in which two methods co-occurred) and can be used for 
further explorations. As an evaluation of the Dominoes framework we present two exploratory case 
studies based on Apache Derby. First, we use Dominoes to show how dependencies among artifacts 
can be derived. Then, we identify expertise of developers by considering the commits that 
developers make to artifacts. We show that identifying relationships among 34,335 elements along 
7,578 commits takes about 0.2 minutes in GPU, while the same processing in CPU takes about 413 
minutes. Besides, identifying expertise of developer on a set of 34,335 files and 36 developers takes 
about 0.1 minute in GPU, whereas in CPU it takes 324 minutes.  

Keywords: Exploratory data analysis; software dependencies; developer expertise; GPU computing. 

1. Introduction

When working on software projects, developers often need to answer numerous 
questions, such as: “which other methods do I need to edit if I make this change?”; “who 
was the person that last edited this method?”; “who do I need to coordinate my changes 
with?”; “who is the expert in a specific file?” and so on [1]. Since software development 
leaves behind activity logs (i.e., commits recorded in the version control system and tasks 
recorded in the issue tracking system), it is possible to answer such questions by 
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analyzing these software repositories. However, finding answers to these questions in the 
software repositories is not trivial, especially when there is an extensive amount of data 
that is accrued over the project’s lifecycle and when this data is (typically) stored across 
different repositories [2]. This makes creating the right queries a nontrivial task [1]. 

Several approaches attempt to help in project explorations. For example, Tesseract [2] 
allows interactive investigation of relationships among files, developers, and issues 
through a network representation. Information Fragments [1] allows a user to compose 
information from tasks, change sets, and teams to explore the relationships between these 
entities. CodeBook [3] builds a graph of all relationship, and then provides specific 
applications for answering questions (e.g., finding related developers or artifacts). EEL 
[4] identifies expertise in a team by analyzing past commits of developers.

However, there are several constraints with these current approaches. First, these
tools often focus only on a particular development aspect (e.g., EEL [5] primarily helps 
in expert identification). Second, these tools typically allow explorations of specific 
relationships that are fixed a priori (e.g., Tesseract preprocesses the sets of dyadic 
relationships first). Third, these tools often need a complete history of the project (e.g., in 
order to traverse the relationship graph, Codebook requires the full history). Fourth, all 
these tools operate at a predefined granularity level (usually high level, such as file), 
while navigating from fine-grain to coarse-grain and vice-versa is essential for 
exploratory analysis. Finally, these tools need to restrict the data that can be analyzed, 
because performing interactive data analytics of software archives through visual 
explorations of relationships among project elements is infeasible at the scale of 
operation that is needed. 

In this paper, we present Dominoes, a novel approach designed to enable interactive 
exploratory analysis of relationships of different software entities at varying levels of 
granularity by utilizing matrices operations processed in GPUs (Graphics Processing 
Unit) architectures. Our approach organizes data from a software repository into multiple 
matrices that are treated as domino tiles, such as [developer|commit], [commit|method], 
[class|method], amongst many other combinations. Just as in the Dominoes game, where 
joining two congruent squares edge to edge can form a rectangle, our matrices can be 
combined to create additional (derived) matrices. This derivation process is guided by a 
set of matrices operations, such as addition, multiplication, and transposition. For 
example, a computation of logical coupling at the method level can be achieved as 
[method|method] = [commit|method]T × [commit|method]. With this new (derived) 
domino tile, we can derive dependency among developers as [developer|developer] = 
[developer|commit] × [commit|method] × [method|method] × [commit|method]T × 
[developer|commit]T. Many different combinations are possible, with each derived 
domino tile representing a particular aspect in software engineering.  

A primary goal of Dominoes is to enable users to explore the relationships in their 
project elements across different levels of granularity. Therefore, the granularity aspect is 
a central architectural element (e.g. [package|class], [file|class], and [class|method]). 
Connecting any other domino tile with these composition tiles or their transpose allows 
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navigation from coarse-grained to fine-grained analysis or vice versa. However, fine-
grained analysis can lead to extremely large data sets to be analyzed. In order to solve the 
scalability problem, Dominoes implements the exploratory analysis of software project 
entities as linear algebra operations over matrices, which can be parallelized in GPU [6]. 
This allows boosts in performance of about three orders of magnitude [7]. Therefore, 
Dominoes opens a new realm of exploratory software analysis, as endless combinations 
of domino pieces can be experimented and generated with in an exploratory fashion. It is 
important to state that we have already used GPU for solving software engineering 
problems. In a previous work [8] we achieved boosts of two orders of magnitude when 
running image diff, patch, and merge operations in GPU. 

In our previous work [9], we introduced Dominoes and showed its feasibility by 
applying it in the identification of logical coupling among methods. This paper extends 
our previous work by (1) providing implementation details including the software 
architecture and (2) showing how Dominoes can also be applied in a completely different 
situation: identification of Expertise of Developers (ED) over artifacts in a project. As a 
first step we consider a file as the unit of analysis. By using our composition tiles, 
Dominoes could be easily tailored to perform finer-grained analysis at the level of 
methods or lines of code. This paper also provides more details about how Dominoes 
contrasts with related work. 

The remaining of this paper is organized as follows: Section 2 presents the Dominoes 
approach, detailing its architecture, basic tiles extracted from software repositories, and 
operations that allow creation of new tiles. Section 3 presents two scenarios on which we 
base the experimental evaluation of Dominoes, which comprises the identification of 
logical coupling among methods and the identification of expertise of developers over 
files. Section 4 presents the evaluation of Dominoes in the aforementioned scenarios over 
the Apache Derby project. Section 5 contrasts Dominoes with related work. Finally, 
Section 6 concludes the paper and discusses future work. 

2. Dominoes Approach

Dominoes extracts data from a software repository and converts them into multiple
matrices (called “tiles” in the Dominoes nomenclature), correlating the desired attributes 
in lines and columns. This strategy allows data manipulation and its operations using 
massively parallel architecture. In our case, this fact allows interactive manipulations 
even with large datasets, as we are using GPUs to perform matrices operations.  

We denominate a matrix as M and its transpose by using a superscript (MT). 
Individual elements in a matrix are denoted as M[i,j]. The operator “×” represents matrix 
multiplication. It is important to note that when multiplying two matrices the number of 
columns in the first operand must be equal to the number of rows in the second operand. 
In our case, the column and rows of the operand over which we are multiplying also 
needs to be congruent (same project element), similar to the Dominoes game. In other 
words, we can multiply [developer|commit] × [commit|method], but not 
[developer|commit] × [method|method]. In the rest of this section, we describe the 
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architecture of Dominoes and then focus on the matrix definitions and how we operate 
over them. 

2.1.   Dominoes Architecture 

Dominoes architecture is designed in such a way that data from a software project 
repository is extracted and the associated change information is archived. Basically, it is 
composed of a set of modules responsible to extract and process data, as seen in Fig. 1. 

 
 

Currently, the Extractor module is responsible for mining Git projects (for version 
management) by cloning and accessing the local repository. The local repository is then 
preprocessed and it is generated a tree of all modifications performed in all commits by 
analyzing which files, packages, classes, and methods were modified. It is important to 
note that the information of each modification is decomposed to get a fine-grained view 
of the changes by using the Eclipse ASTParser (suitable for Java-based projects). For 
example, even if we represent changes at the package level (for a coarse-grained 

Fig. 1. Dominoes Architecture. 



 Multi-Perspective Exploratory Analysis of Software Development Data     5 
 
analysis), we know exactly which class was modified, as well as which methods were 
modified. This information is then stored in a relational database. Furthermore, after the 
initial data collection, information about subsequent changes can be updated 
incrementally to the database.  

After the pre-processing stage, basic Dominoes tiles are constructed on the fly by the 
Basic Tile Builder module, which relies on querying the database in order to perform the 
desired relationship request, based on the granularity chosen by the user (e.g., File, 
Method, Package). These tiles then become available to the users, allowing them to 
manipulate the tiles according to their needs.  

There are several additional manipulations of the data that is allowed by Dominoes: 
manipulating the set of building tiles as well as filtering their values. These manipulations 
include Linear Transformations (e.g., addition, multiplication, and transposition of 
matrices), Data Mining metrics (e.g., calculating confidence and lift in a tile), and 
Statistics operations (e.g., calculating the mean), as presented in Section 2.3. Basic 
building tiles can be further combined through linear transformation operations to yield 
derived tiles that allow exploration of derived project relationships. These derived 
domino tiles can also be saved as new template pieces in case that they will be used in 
other calculations and compositions. All tiles (basic and derived) are stored in memory, 
allowing their use as needed for analysis since the data is cached. 

Performance becomes an issue when we compute relationships at a fine-grained level. 
Therefore, in order to allow efficient computation at the level of interactive speeds, we 
model the aforementioned manipulations as Single Instruction Multiple Thread (SIMT) 
architecture, making it possible to execute the intensive matrix operation computation at 
a GPU device. When a matrix manipulation is needed, Dominoes forks its execution by 
triggering the respective asynchronous GPU code (called kernel) according to the desired 
operation. 

A GPU kernel is implemented in CUDA, a proprietary Nvidia programming language 
based on C, and is targeted to be executed only over GPUs. Basically a CUDA kernel is a 
function that generates thousands of parallel threads in the GPU device. While all these 
threads must work over the same code, they operate at different parts of the data. Since 
modern GPUs have thousands of cores, when the data is correctly distributed, it is 
possible to achieve speed-ups of two or even three orders of magnitude when compared 
with traditional multi-core CPUs [10], depending on the nature of the problem. Modeling 
the data structure as matrices allows optimal parallelization, especially in the case of 
operations that have only local data dependencies and avoid code divergence, as it is in 
our case. 

Except for the CUDA kernel operations, Dominoes is otherwise developed in JAVA, 
which includes maintaining the tiles in memory. Performing operations over these tiles 
therefore, requires communicating the data with a C code, as kernels in CUDA must be 
programmed using the C language. Therefore, Dominoes implements a Java Native 
Interface (JNI) that is responsible for serializing and deserializing building tiles to and 



6     Silva Junior, Clua, Murta, Sarma 
 
from C. During serialization, matrices are flattened to a vector and converted back to 
matrices during deserialization.  
 

2.2.   Dominoes Tiles 

Dominoes includes basic building tiles, which can be combined to create derived building 
tiles, which can be further combined with other basic or derived tiles. The basic building 
tiles are created by extracting data from existing software repositories (version control 
systems, issue tracking systems, etc.). For example, commits, issues, discussions about a 
commit, or pull request can be collected from GitHub. The basic building tiles around 
commits include: 
 
• [class|method] (ClM): relationship between a class and its constituent methods, 

where cell ClM[i,j] has a value of 1 when class i contains method j.  
• [commit|method] (CM): relationship between commits and methods, where cell 

CM[i,j] has a value of 1 when commit i adds or changes method j. Note that the 
index i does not necessary express the commit id. 

• [developer|commit] (DC): relationship between developers and their commits, where 
cell DC[i,j] has a value of 1 when developer i is the author of commit j. 

• [bug|commit] (BC): relationship between commits and bugs, where cell BC[i,j] has a 
value of 1 when commit j fixed bug i. 
 

These basic building tiles can then be combined to form a series of derived building 
tiles. In the following we show a small set of derived building tiles that can be computed 
using the multiplication and transposition operations: 
 
• [method|method] (MM = CMT × CM): represents method dependencies, where 

MM[i,j] denotes the strength of the dependency of method j on method i. The 
rationale of this matrix is based on logical dependencies, as elements that are co-
committed together share some program logic. Note that we can also create an MM 
matrix through program analysis, in which case it would be termed as a basic 
building tile. Such MM matrices have been explored by Steward [11] in Design 
Structure Matrices. 

• [class|class] (ClCl = ClM  × MM  × ClMT ): represents class dependencies, where 
ClCl[i,j] denotes the strength of the dependency of class j on class i. Note that using 
the composition tile, we can easily provide analysis results at a higher-level of 
abstraction. 

• [bug|method] (BM = BC × CM): represents the methods that were changed to fix 
each bug. This matrix could be used to identify which methods are “buggy”.  

• [developer|method] (DM = DC × CM): represents the methods that a developer has 
changed. This matrix could be used to identify experts on a particular method.  
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• [developer|class] (DCl = DM × ClMT): represents classes that a developer has 

changed. DCl uses the composition operation to provide expertise information at the 
class level, which is typically used during bug triaging [3]. 

• [developer|developer] (DD = DM × MM × DMT): represents the expertise 
dependency among developers, where developer j depends on some knowledge of 
developer i, because of underlying technical dependencies in their work. Note that 
here this derived building tile uses other derived building tiles (MM and DM) in its 
definition. 

2.3.   Specialized Operations 

Our basic matrices are typically binary, that is, M[i,j] is either 1 or 0 for any i and j, 
whereas our derived matrices are not. This is largely because commits are atomic 
transactions and therefore most associated matrices with commits are binary. In the case 
of derived matrices, cell values have associated semantics. Simple operations such as 
multiplication and transposition allow us to compose different types of domino tiles to 
derive more complex matrices and, thereby, different software engineering constructs. 
However, there are three “specialized” operations that can be applied on derived matrices 
where individual cells are not binary. 

Let us take the example of the MM matrix. The diagonal shows how frequently a 
method has been changed and each cell (M[i,j]) shows how frequently a method (i) has 
changed together with another method (j). This semantics is equivalent to the absolute 
support, largely adopted in the data mining community. The support of an item set is 
defined as the proportion of transactions in the dataset that contains the item set. 
According to [12], the rule 𝑋⟶ 𝑌 has support s if s% of transactions contain 𝑋∪𝑌. As 
this operation pattern of multiplying a matrix by its transpose is very popular and 
semantically rich, we treat it as a specialized operation computed according to Eq. 1. 
 

M!"# = M×M! (1) 

The semantics of support allows us to answer software engineering related questions 
regarding the strength of the relationships. For example, if we are interested in predicting 
which other methods a developer needs to edit because of a change, we can use the 
concept of logical coupling (files that are committed together have underlying logical 
dependencies) to identify all those methods that are dependent on the edited method and 
may also need to be changed. We could use the MM = MC!"# matrix to answer this 
question.   

Unfortunately, support is transitive, so M!"# 𝑖, 𝑗 =   M!"#[𝑗, 𝑖]. Consequently, using 
support to represent dependencies is not precise, as program dependency is not transitive. 
In order to obtain a more precise relationship that reflects the direction of the 
dependency, Zimmermann et al. [13] use confidence to represent logical coupling. This 
metric suggests which artifacts should be modified together, given that a specific artifact 
is being modified. According to [12] the rule 𝑋⟶ 𝑌 has confidence c if c% of 
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transactions that contain X also contain Y. In the context of our approach, when applied to 
MM matrix, confidence quantifies the occurrence of an entity (e.g., method) change 
given that the other entity (e.g., method) has also been changed. The confidence operator 
is computed according to Eq. 2. 
 

M!"#$[𝑖, 𝑗] =
M!"# 𝑖, 𝑗
M!"# 𝑖, 𝑖

 (2) 

Confidence does not have a transitive property among elements, so it is possible to 
define different levels of dependency for each pair. However, confidence suffers form 
another type of problem. In the context of data mining, confidence is used to quantify 
relations such as “those who buy product A also buy product B”. In this case, if product 
B is presented in almost all orders, purchase of any product will lead to a high confidence 
in buying B. For this reason, analyzing confidence alone tends to be imprecise, and can 
exhibit false relationships. 

To address this problem we can use a third metric, called as lift [12]. Lift measures 
the influence of the antecedent in the frequency of the consequent. Formally, the rule 
𝑋⟶ 𝑌  has lift L if the frequency of 𝑌 increases in L times when 𝑋 occurs. According to 
this definition, we are interested in dependencies with lift greater than 1, as any other 
value implies irrelevant (coincidental) relationships. The lift operator is defined by Eq. 3, 
where the scalar multiplication by the number of commits (Mrows) transforms the absolute 
support (Msup) into relative support (values ranging from 0 to 1). 
 

M!"#$ 𝑖, 𝑗 =
M!"#$ 𝑖, 𝑗 ×M!"#$

M!"# 𝑗, 𝑗
 (3) 

3.   Usage Examples 

In this section we introduce a simple scenario to show how data mining concepts such as 
support, confidence, and lift matter when identifying artifact dependencies (Section 3.1). 
Additionally, Section 3.2 exhibits how Dominoes can be used to identify expertise across 
files. 

3.1.   Calculating Method Dependencies 

Consider a scenario where three developers (Alice, Bob, and Carlos) work together on a 
“geometry project”, containing four classes (Circle, Cylinder, Cone, and Shape). Circle 
has a method circumf() that calculates its circumference. Shape has a method draw() to 
render a shape. Finally both Cylinder and Cone have methods area() to calculate the area 
of the respective shapes. Table 1 describes five commits and their change descriptions. 
Table 2 shows which commits modified which methods. Note that this is an intentionally 
simple example to explain the concepts in the paper. 
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Fig. 2 represents the support, confidence, and lift values for the MM matrix, where Ci 
represents Circle.circumference(), Cy – Cylinder.area(), Co – Cone.area(), and S – 
Shape.draw(). 

 

Table 1. Commits made by developers. 

Commit # Developer Description 

C1 Alice 
Change type of function parameter to compute the 

radius (Circle) and how to render it (in Shape) 

C2 Carlos Change the side of Cone and how to render it 

C3 Alice Change how a Shape is rendered 

C4 Alice 

Calculation of how circumference and area are 

calculated using PI. Required modification on how 
to draw a Shape 

C5 Bob 
Modify the height calculation of a cylinder and how 
it is rendered 

 

Table 2. Methods changed for commit. 

Commit # 
Circle 

circumf() 
Cylinder 

area() 
Cone 
area() 

Shape 
draw() 

C1 1 1 0 1 
C2 0 0 1 1 

C3 0 0 0 1 
C4 1 1 1 1 
C5 0 1 0 1 

 

 

Fig. 2. Support, Confidence, and Lift calculated from previous scenario. 

 
If we consider the confidence matrix, we notice that the dependency from Cy to Ci 

(100% confidence – row 1 column 2) is stronger than from Ci to Cy (60% confidence, 
row 2, column 1), because whenever Ci was changed it also required changes to Cy  
(commits C1 and C4) (see Table 2). However, Cy was changed once without Ci (commit 
C5). With such a confidence analysis we can state that Cy (always) depends on Ci, but Ci 
does not necessarily depend on Cy. Therefore, using confidence to derive the DD matrix 
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would identify that Bob should communicate with Alice, but not necessary the opposite 
way. 

The confidence matrix also indicates high dependency from S to all other methods. 
However, this occurs not because S really depends on all other methods, but because S 
was independently changed in all commits (see Table 2). The lift matrix eliminates such 
coincidental dependencies, keeping only dependencies between Cy and Ci, and Co and 
Ci, since all other values are either equal to or below 1. 

In summary, support alone is not sufficient to indicate dependencies among project 
entities, but helps in eliminating dependencies that appear by chance (e.g., Co and Ci). In 
a large project, with thousands of commits, thresholding on a predefined support level 
can help to eliminate accidental dependencies. On the other hand, lift plays a 
complementary role of identifying dependencies to elements that are very frequent (e.g., 
S) and, therefore, may be a cause of coincidental changes. Finally, confidence is 
important to identify the direction of the dependency (e.g., from Cy to Ci). With such an 
analysis, we find that the only real dependency in our scenario is from Cy to Ci, which 
would lead to a communication requirement from Bob to Alice in the DD matrix. 

Our approach, therefore, provides four distinct advantages. First, the confidence 
measure allows more nuanced investigations (e.g., direction of dependency). Second, the 
use of lift measure increases the accuracy of finding by filtering out common, but 
unrelated changes. Third, the fine-grained analysis from the method level increases 
accuracy, since we can identify dependencies among individual methods. Therefore, if 
we find that Cy depends on Ci, we can find that Bob needs to coordinate with Alice, who 
is working on Ci, and not another developer who is working on the same file (Circle, but 
on a different method). Finally, GPU processing allows these investigations to be 
performed interactively. 

3.2.   Identifying Expertise in a Project 

In this section, we introduce our strategy for identifying Expertise of Developers (ED) 
over artifacts in a project by considering the entire artifacts as an atomic element. This 
strategy is vastly adopted in the literature [2], [5], [14] and is based on the frequency of 
changes to an artifact (e.g., file, project, etc.) made by a given developer. Frequency of 
edits has long been used as a proxy for identifying the knowledge that a developer has 
about an artifact, typically a file [15]. The intuition is that the more someone has edited a 
file, the more working knowledge the developer has about that file. The frequency of 
edits can therefore help to answer two related questions: (1) which developer is an expert 
for a given file, and (2) which files is a given developer an expert of. 

Table 3 uses the same scenario from previous section but now presenting information 
of which file each one has worked on ([developer|file] – DF for short). It is important to 
note that we arrived at the DF matrix by operating over the basic tiles 
([developer|commit] x [commit|method] x [file|method]T). The cells in the derived matrix 
DF represent the number of times a developer di changed methods inside fj. Besides that, 
Table 3 also shows the number of commits performed by each developer (note that it is 
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different from summing all columns in a row, as a commit could comprise multiple 
method changes on more than one file). 

Table 3. Developer x File (DF matrix). 

Project Circle.java Cylinder.java Cone.java Total 
Commits 

Alice 14 2 20 28 
Carlos 10	
   24 12 25 

Bob 25 10 8 40 
 
To answer the first expertise question (who is an expert for a given file fj), we search 

for the developers who edited the file the most. This is done by scanning down the 
column of fj in the DF matrix. In our simplistic example (see Table 3), if we want to 
identify an expert for Cone.java, we would select Alice. Carlos would be considered as 
the second most knowledgeable developer of that file.  

To answer our second question, about the expertise of a specific developer di, we scan 
the rows in the matrix for the highest values. In our example, we find that Alice has 
expertise in Cone.java, Carlos in Cylinder.java, and Bob in Circle.java. 

4.   Case Study: Apache Derby  

In order to evaluate Dominoes in a real environment, we perform two case studies by 
using the history of Apache Derbya, an open source relational database project. The first 
study shows how to calculate artifact dependencies. It also demonstrates how solely 
working with support is error prone. The second study demonstrates how Dominoes can 
be used for expertise identification in a project. All analyses were performed by 
considering the repository data from 08/11/2004 to 01/23/2014, which in total comprises 
7,578 commits, 36 distinct developers, 34,335 files, and 305,551 methods committed 
during approximately 10 years. The case study was performed at the file-level for easier 
interpretation of the results. However, as discussed before, Dominoes can easily navigate 
from coarse to fine-grained analysis and vice-versa by using the “composition” operation.  

4.1.   Calculating dependencies in Derby 

We first create the MM matrix (dependencies between methods based on co-commit 
information) and then apply the composition operation to calculate the ClCl (class to 
class) matrix. We found that in Derby a file was associated with only one class, therefore, 
for our purposes the ClCl matrix is the same as the FF ([file|file]) matrix. We then applied 
the confidence and lift analysis on this matrix. We found that due to the characteristics of 
Derby, the lift analysis does not filter out any coincidental dependencies. This is because 
the Derby file dependencies are highly clustered, causing low support and a very high lift. 
When we filter the lift values by thresholding it with “1”, no data points were eliminated. 
Therefore, here we restrict our discussion to the support and confidence analysis results. 

 
a Derby Repository: https://github.com/apache/derby. 
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Table 4 presents the top 5 logical dependencies in terms of support and with the 
biggest difference in confidence. It is important to remember that confidence is not 
transitive.  

Considering the first case as an example, it is possible to observe that using the 
common approach that is based on support, artifacts DataDictionary.java and 
DataDictionary-Impl.java would be considered as dependent to each other as they have a 
high support (in fact, 79 is the highest value of absolute support in the whole system). 
However, when observing the confidence, it is possible to see that only 
DataDictionaryImpl.java has dependency with DataDictionary.java, which is reasonable 
as changing a method implementation normally does not result in a change to its 
interface. The following two rows are also interface/implementation cases, presenting the 
same behavior. In the fourth row, we have a composition case, where 
DRDAConnThread.java possesses a DRDAStatement.java instance. In this case, 
modifying the former does not necessary imply a modifications in the latter. However, 
there is a high likelihood of a related change in the opposite direction, that is, 
modifications in DRDAStatement.java can change method signatures used by 
DRDAConnThread.java, for instance. 

Finally, the last case is a class specialization, which normally requires modification to 
both files, with a slightly higher dependence from the subclass to the superclass. These 
analyses show the importance of using confidence to identify the direction of the 
dependencies. 

Table 4. Top 5 logical dependencies in terms of high support and biggest confidence 
difference. 

Artifact A Artifact B 
Support Conf. 

(A-B) 

Conf. 

(B-A) 

DataDictionary.java DataDictionaryImpl.java 79 0.88 0.37 

DD_Version.java DataDictionaryImpl.java 45 0.78 0.21 

LanguageConnectionConte
xt.java 

GenericLanguageConnectio
nContext.java 

44 0.86 0.48 

DRDAConnThread.java DRDAStatement.java 37 0.22 0.68 

ResultSetNode.java SelectNode.java 36 0.54 0.45 
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Fig. 3. Relation among confidence for various support threshold. The leftmost chart considers a threshold of 10, 
while the middle uses 20, and finally the rightmost uses 30. 

Besides these five top dependencies, Fig. 3 presents a scatter plot chart with all 
dependencies at three specific support levels (10, 20, and 30). This chart plots each 
dependency according to its confidence in both directions (A-B and B-A). This way, 
dependencies with the same confidence value in both directions are plotted along the 
diagonal. As we can see, however, there are several cases where points are located far 
from the diagonal. When we consider the rightmost chart in Fig. 3 (support threshold at 
30) for discussion, we can observe some distinct patterns. The red quadrant shows that 
both conf(A-B) and conf(B-A) are less than 0.5, thus containing weak bidirectional 
dependencies. The yellow quadrant, on the other hand, shows dependencies where both 
conf(A-B) and conf(B-A) are above 0.5, thus containing strong bidirectional 
dependencies. Finally, the green and blue quadrants show unidirectional dependencies 
with highest divergences among confidence. In this case, dependencies from these 
quadrants can be erroneously classified as bidirectional if we solely use support to 
analyze dependencies. 

Performing an analysis such as the one in Fig. 3 can unveil how inaccurate 
dependencies extracted from support-based approaches tend to be. As demonstrated for 
the Derby project, only dependencies in the yellow-quadrant should be classified as 
bidirectional. Both blue and green quadrants present unidirectional dependencies. 

In this evaluation, the CCl (i.e., [commit|class]) matrix was of size 7,578 × 34,335. 
The generation of CClsup and CClconf using GPU (NVidia GeForce GTX 580) took about 
0.2 minutes. However, performing the same computation using CPU (Intel Core 2 Quad 
Q6600) took 413 minutes. This shows that we get a speedup of three orders of magnitude 
when using GPU – with just the simple calculation that requires one transposition and 
three multiplication operations. Similarly, when we process MC (i.e., [method|commit]), 
with size of 305,551 × 7,578, it takes about 0.3 minutes in GPU. This calculation was 
infeasible to do so in a reasonable amount of time when processed on CPU (after waiting 
for 720 minutes). This makes CPU processing of data infeasible when analyzing fine-
grained project data. 
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4.2.   Identifying expertise in Derby 

Expertise of a developer is processed by analyzing the data about methods that were 
modified (and committed) by a developer. However, here we present the results at the 
granularity of files for simplification of presentation, with out any loss of generalization. 
Further, we discuss results for the files shown in Table 4. The expertise of a developer for 
these files is presented in Fig. 4.  

When we go back to the two expertise questions that we stated earlier in Section 3.2, 
we can find the answer for the first question (which developer is an expert for a given 
file?) by examining the developer who most committed the file under consideration. 
Using the set of artifacts presented in Table 4 among its specific relationships (the first 
three rows represent interface/implementation; the fourth represents a composition; and 
the last row represents specialization), it is possible to observe from Fig. 4 that Richard 
has the highest expertise in DataDictionary.java and DataDictionaryImpl.java. This 
result suggests that he has the highest expertise in the interface as well as its 
implementation. The same phenomenon is observed for DD_Version.java and 
DataDictionaryImpl.java, where the developer with the higher expertise (also Richard) is 
the same for the interface and its implementation. For the third interface/implementation 
case, represented by files LanguageConnectionContext.java and 

Fig. 4. Expertise of developer for files listed in Table 4. Each bar in the chart represents the total percentage of 
changes to a file, where each segment displays the number of commits made by a developer (color coded). 
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GenericLanguageConnectionContext.java, we find that there are two experts – Dag and 
Daniel, respectively.  

The composition case (represented in the fourth line of Table 4) between 
DRDAConnThread.java and DRDAStatement.java is also reflected in Fig. 4, as it is 
possible to see that Knut is the only expert in DRDAConnThread.java while 
DRDAStatement.java has Katherine as the highest expert. An implication of this finding 
about no other person having expertise over DRDAConnThread.java is that if Knut 
would leave the project then others in the project will have trouble to maintain 
DRDAConnThread.java. An advantage of using Dominoes is that project managers can 
use such information to being proactive and ensure that there are enough experts for each 
file in the project (or at least for the crucial files in the project). Finally the specialization 
case (last row in Table 4) represented by ResultSetNode.java and SelectNode.java has 
different expert developers: Katherine for the former, while Dag has the highest expertise 
for the latter. 

Finally, answering the second question (which files is a given developer an expert 
of?) requires locating in the chart which file a developer has the most expertise in the 
project. We find that Richard and Daniel have the most expertise in 
DataDictionaryImpl.java; Dag in GenericLanguageConnectionContext.java; Knut in 
DRDAConnThread.java (and also being the only expert in this file), while Katherine and 
Bernt have the most expertise in DRDAStatement.java.  

Identifying expertise of developers on a set of 34,335 files among 36 developers in 
the project (34,335 × 36 matrix size) takes about 0.1 minute when using GPU in 
Dominoes. When we performed the same operations using CPU (and keeping everything 
else the same) it took a total of 324 minutes. 

5.   Related Work 

Determining Dependencies can be done by numerous approaches that focus on 
identifying structural dependencies (through syntactic analysis) or logical dependencies 
(through change history) amongst artifacts. Cataldo et al. [14] stands out as they use 
matrices to process dependencies among developers based on dependencies among 
artifacts. In their approach, both structural dependencies and logical dependencies 
become Task Dependency (TD) matrices, and change requests, associating developers to 
artifacts, becomes Task Assignment (TA) matrix. These matrices are used in an equation 
that indicates coordination requirements 𝑇!×𝑇!×𝑇!!. Our approach generalizes this idea 
by allowing different kinds of exploration over matrices. Finally, our identification of 
relationships is innovative, as it allows combining support, confidence, and lift, to 
compose the dependency matrix depending on the analysis need.  

Exploratory Data Analysis tools provide either predefined questions or are very 
limited to derive information that was not conceived beforehand. In the case of Tesseract 
[2], for example, the available relationships are preprocessed and the matrices are fixed at 
a coarse grain (file-file, file-developer, file-bug, bug-developer). CodeBook [3] follows a 
similar approach that builds a graph of all relationship, which can then be used by 
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applications for answering specific questions (e.g., identifying related developers or 
artifacts). Gall et al. [16] built a tool for mining software archives at a fine grain in order 
to compare source code changes. From these analyses, recommendations such as change 
type patterns and consistency of changes can also be made. Dominoes allows for a wide 
open set of questions that can be answered based on how the relationships are composed 
by the user during exploration. Also, our architecture in modeled in a way that any 
repository can be plugged into the system, avoiding the necessity to build a new tool. 

Recommender Systems are approaches designed to help decision-making. McDonald 
and Ackerman [4] introduced Expertise Recommender (ER), which is based on two 
heuristics for recommending developers for specific tasks: tech support and change 
history. The tech support heuristic uses an issue database to search for similar situations 
and recommends the people involved in previous situations. The change history heuristic 
states that the last person that changed an artifact is a good candidate for changing it 
again. Unfortunately, the latter heuristic places a high weight on the most recent changes 
and ignores the past, which might affect the quality of the recommendations. Anvik et al. 
[17] deal with the problem of recommending developers for a specific issue by using 
machine learning techniques exclusively over an issue database, avoiding dealing with 
source code artifacts. Kagdi et al. [18] proposed a system for assisting in the tasks of 
allocating developers for changing a given file. It considers three metrics to compose a 
ranked list of recommended developers: contribution, activity, and recency of changes. 
The contribution metric indicates the number of commits each developer has made for a 
file. The activity metric indicates the number of days the developer has committed at 
least once in the project. The recency metric indicates the date of the last commit of each 
developer. This approach works only at coarse grain (i.e., files) and is not designed to 
support online exploratory analysis. Instead of a recommendation system, Dominoes 
provides a generic and flexible platform for exploratory analysis of project elements at 
any granularity level, which is compatible with multiple data types and relationships. Its 
interactive capabilities are mainly possible due to the adoption of the massively parallel 
architecture of the GPU.  

6.   Conclusion 

Dominoes is an exploratory data analysis approach that allows users to select information 
about different project elements and their interrelationships from a repository. 
Relationships are represented by matrices, defined as basic building tiles and derived 
building tiles. Both kinds of building tiles can be combined iteratively to reveal deeper, 
complex relationships. Through such explorations, relationships that have not been 
computed or published before can be discovered via operations over these building tiles. 
As all operations are performed in parallel over GPU, exploratory analysis can occur 
seamlessly at interactive rates, even when computing relationships in fine-grained data. 
The current version of Dominoes tool extracts data from a Git repository and operates 
over the matrices by using GPU kernels implemented in CUDA. 
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Our evaluation contrasted the use of support alone and the use of support and 
confidence to distinguish the dependence directions. In the case of Apache Derby, 
employing confidence leads to a more accurate analysis for finding dependencies among 
artifacts. Moreover, using confidence for thresholding a relationship is more natural for 
the user, as it represents a normalized value. Besides that, we demonstrated how we can 
identify an expert developer for a file in a project. This information can be valuable 
during task assignment, where a task needs to be assigned to a developer who knows the 
content (file) best; as well as during development, where a developer may seek help from 
an expert.  

The Dominoes architecture was intentionally designed to easily accommodate the 
definition of new basic building tiles, such as relationships mined from communication 
channels (e.g., email, chat, discussion forums). The same extensibility feature also 
applies for operations. Besides the basic matrix operations, such as multiplication and 
transposition, specialized operations can also be easily created and plugged into 
Dominoes, as showed in section 2.3 for support, confidence, and lift. This makes 
Dominoes a key contribution to the scientific community, as empirical studies can be 
reproduced over different corpora in order to validate an investigation. This has the 
potential of alleviating the pain of setting up an environment for each trial of an 
investigation. 

Although we currently use matrices and GPU underneath Dominoes, other data 
representations and execution environments could be adopted in the future. For example, 
relational algebra is a compelling alternative to link sparse data. Moreover, SMP is the de 
facto architecture of modern personal computers. In this case, some kinds of analysis, 
such as reachability (used in impact analysis), can heavily benefit by operating over 
matrices in GPU. 

A concept not discussed in this paper, which is currently under development, is the 
use of three-dimensional (3D) building tiles. These 3D building tiles represent time as the 
third dimension over the matrices. We posit that using this additional dimension would 
allow us to observe the evolution of relationships in the project over time. Another 
ongoing work is on creating visualizations of basic and derived building tiles both in two 
and three dimensions to support visual explorations of data by end users. 
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