
1

MULTI-PERSPECTIVE EXPLORATORY ANALYSIS
OF SOFTWARE DEVELOPMENT DATA

JOSE RICARDO DA SILVA JUNIOR,

ESTEBAN CLUA* and LEONARDO MURTA†

Instituto de Computação, Universidade Federal Fluminense
Rua Passo da Pátria 156, Niterói, Rio de Janeiro, Brazil

{jricardo, esteban, leomurta}@ic.uff.br

ANITA SARMA

Computer Science and Engineering, University of Nebraska
1400 R St, Lincoln, NE 68588, United States

asarma@cse.unl.edu

In this paper, we present Dominoes, an approach for analyzing software repositories with thousands
of artifacts by considering multiple perspectives of the software development data. In order to
achieve computational power we model the data and its relationships as matrices, making possible to
efficiently process them with a GPUs (Graphics Processing Unit) based architectures. Dominoes can
support automated exploration of different relationships among project artifacts, where users have
the flexibility to interactively combine and compose them. Our solution organizes data extracted
from software repositories into multiple matrices that can be treated as domino pieces (e.g.,
[commit|method]). The connection of such pieces corresponds to a set of matrices operations, which
derive additional domino pieces. These derived domino pieces represent specific project entity
relationships (e.g., number of commits in which two methods co-occurred) and can be used for
further explorations. As an evaluation of the Dominoes framework we present two exploratory case
studies based on Apache Derby. First, we use Dominoes to show how dependencies among artifacts
can be derived. Then, we identify expertise of developers by considering the commits that
developers make to artifacts. We show that identifying relationships among 34,335 elements along
7,578 commits takes about 0.2 minutes in GPU, while the same processing in CPU takes about 413
minutes. Besides, identifying expertise of developer on a set of 34,335 files and 36 developers takes
about 0.1 minute in GPU, whereas in CPU it takes 324 minutes.

Keywords: Exploratory data analysis; software dependencies; developer expertise; GPU computing.

1. Introduction

When working on software projects, developers often need to answer numerous
questions, such as: “which other methods do I need to edit if I make this change?”; “who
was the person that last edited this method?”; “who do I need to coordinate my changes
with?”; “who is the expert in a specific file?” and so on [1]. Since software development
leaves behind activity logs (i.e., commits recorded in the version control system and tasks
recorded in the issue tracking system), it is possible to answer such questions by

2 Silva Junior, Clua, Murta, Sarma

analyzing these software repositories. However, finding answers to these questions in the
software repositories is not trivial, especially when there is an extensive amount of data
that is accrued over the project’s lifecycle and when this data is (typically) stored across
different repositories [2]. This makes creating the right queries a nontrivial task [1].

Several approaches attempt to help in project explorations. For example, Tesseract [2]
allows interactive investigation of relationships among files, developers, and issues
through a network representation. Information Fragments [1] allows a user to compose
information from tasks, change sets, and teams to explore the relationships between these
entities. CodeBook [3] builds a graph of all relationship, and then provides specific
applications for answering questions (e.g., finding related developers or artifacts). EEL
[4] identifies expertise in a team by analyzing past commits of developers.

However, there are several constraints with these current approaches. First, these
tools often focus only on a particular development aspect (e.g., EEL [5] primarily helps
in expert identification). Second, these tools typically allow explorations of specific
relationships that are fixed a priori (e.g., Tesseract preprocesses the sets of dyadic
relationships first). Third, these tools often need a complete history of the project (e.g., in
order to traverse the relationship graph, Codebook requires the full history). Fourth, all
these tools operate at a predefined granularity level (usually high level, such as file),
while navigating from fine-grain to coarse-grain and vice-versa is essential for
exploratory analysis. Finally, these tools need to restrict the data that can be analyzed,
because performing interactive data analytics of software archives through visual
explorations of relationships among project elements is infeasible at the scale of
operation that is needed.

In this paper, we present Dominoes, a novel approach designed to enable interactive
exploratory analysis of relationships of different software entities at varying levels of
granularity by utilizing matrices operations processed in GPUs (Graphics Processing
Unit) architectures. Our approach organizes data from a software repository into multiple
matrices that are treated as domino tiles, such as [developer|commit], [commit|method],
[class|method], amongst many other combinations. Just as in the Dominoes game, where
joining two congruent squares edge to edge can form a rectangle, our matrices can be
combined to create additional (derived) matrices. This derivation process is guided by a
set of matrices operations, such as addition, multiplication, and transposition. For
example, a computation of logical coupling at the method level can be achieved as
[method|method] = [commit|method]T × [commit|method]. With this new (derived)
domino tile, we can derive dependency among developers as [developer|developer] =
[developer|commit] × [commit|method] × [method|method] × [commit|method]T ×
[developer|commit]T. Many different combinations are possible, with each derived
domino tile representing a particular aspect in software engineering.

A primary goal of Dominoes is to enable users to explore the relationships in their
project elements across different levels of granularity. Therefore, the granularity aspect is
a central architectural element (e.g. [package|class], [file|class], and [class|method]).
Connecting any other domino tile with these composition tiles or their transpose allows

 Multi-Perspective Exploratory Analysis of Software Development Data 3

navigation from coarse-grained to fine-grained analysis or vice versa. However, fine-
grained analysis can lead to extremely large data sets to be analyzed. In order to solve the
scalability problem, Dominoes implements the exploratory analysis of software project
entities as linear algebra operations over matrices, which can be parallelized in GPU [6].
This allows boosts in performance of about three orders of magnitude [7]. Therefore,
Dominoes opens a new realm of exploratory software analysis, as endless combinations
of domino pieces can be experimented and generated with in an exploratory fashion. It is
important to state that we have already used GPU for solving software engineering
problems. In a previous work [8] we achieved boosts of two orders of magnitude when
running image diff, patch, and merge operations in GPU.

In our previous work [9], we introduced Dominoes and showed its feasibility by
applying it in the identification of logical coupling among methods. This paper extends
our previous work by (1) providing implementation details including the software
architecture and (2) showing how Dominoes can also be applied in a completely different
situation: identification of Expertise of Developers (ED) over artifacts in a project. As a
first step we consider a file as the unit of analysis. By using our composition tiles,
Dominoes could be easily tailored to perform finer-grained analysis at the level of
methods or lines of code. This paper also provides more details about how Dominoes
contrasts with related work.

The remaining of this paper is organized as follows: Section 2 presents the Dominoes
approach, detailing its architecture, basic tiles extracted from software repositories, and
operations that allow creation of new tiles. Section 3 presents two scenarios on which we
base the experimental evaluation of Dominoes, which comprises the identification of
logical coupling among methods and the identification of expertise of developers over
files. Section 4 presents the evaluation of Dominoes in the aforementioned scenarios over
the Apache Derby project. Section 5 contrasts Dominoes with related work. Finally,
Section 6 concludes the paper and discusses future work.

2. Dominoes Approach

Dominoes extracts data from a software repository and converts them into multiple
matrices (called “tiles” in the Dominoes nomenclature), correlating the desired attributes
in lines and columns. This strategy allows data manipulation and its operations using
massively parallel architecture. In our case, this fact allows interactive manipulations
even with large datasets, as we are using GPUs to perform matrices operations.

We denominate a matrix as M and its transpose by using a superscript (MT).
Individual elements in a matrix are denoted as M[i,j]. The operator “×” represents matrix
multiplication. It is important to note that when multiplying two matrices the number of
columns in the first operand must be equal to the number of rows in the second operand.
In our case, the column and rows of the operand over which we are multiplying also
needs to be congruent (same project element), similar to the Dominoes game. In other
words, we can multiply [developer|commit] × [commit|method], but not
[developer|commit] × [method|method]. In the rest of this section, we describe the

4 Silva Junior, Clua, Murta, Sarma

architecture of Dominoes and then focus on the matrix definitions and how we operate
over them.

2.1. Dominoes Architecture

Dominoes architecture is designed in such a way that data from a software project
repository is extracted and the associated change information is archived. Basically, it is
composed of a set of modules responsible to extract and process data, as seen in Fig. 1.

Currently, the Extractor module is responsible for mining Git projects (for version
management) by cloning and accessing the local repository. The local repository is then
preprocessed and it is generated a tree of all modifications performed in all commits by
analyzing which files, packages, classes, and methods were modified. It is important to
note that the information of each modification is decomposed to get a fine-grained view
of the changes by using the Eclipse ASTParser (suitable for Java-based projects). For
example, even if we represent changes at the package level (for a coarse-grained

Fig. 1. Dominoes Architecture.

 Multi-Perspective Exploratory Analysis of Software Development Data 5

analysis), we know exactly which class was modified, as well as which methods were
modified. This information is then stored in a relational database. Furthermore, after the
initial data collection, information about subsequent changes can be updated
incrementally to the database.

After the pre-processing stage, basic Dominoes tiles are constructed on the fly by the
Basic Tile Builder module, which relies on querying the database in order to perform the
desired relationship request, based on the granularity chosen by the user (e.g., File,
Method, Package). These tiles then become available to the users, allowing them to
manipulate the tiles according to their needs.

There are several additional manipulations of the data that is allowed by Dominoes:
manipulating the set of building tiles as well as filtering their values. These manipulations
include Linear Transformations (e.g., addition, multiplication, and transposition of
matrices), Data Mining metrics (e.g., calculating confidence and lift in a tile), and
Statistics operations (e.g., calculating the mean), as presented in Section 2.3. Basic
building tiles can be further combined through linear transformation operations to yield
derived tiles that allow exploration of derived project relationships. These derived
domino tiles can also be saved as new template pieces in case that they will be used in
other calculations and compositions. All tiles (basic and derived) are stored in memory,
allowing their use as needed for analysis since the data is cached.

Performance becomes an issue when we compute relationships at a fine-grained level.
Therefore, in order to allow efficient computation at the level of interactive speeds, we
model the aforementioned manipulations as Single Instruction Multiple Thread (SIMT)
architecture, making it possible to execute the intensive matrix operation computation at
a GPU device. When a matrix manipulation is needed, Dominoes forks its execution by
triggering the respective asynchronous GPU code (called kernel) according to the desired
operation.

A GPU kernel is implemented in CUDA, a proprietary Nvidia programming language
based on C, and is targeted to be executed only over GPUs. Basically a CUDA kernel is a
function that generates thousands of parallel threads in the GPU device. While all these
threads must work over the same code, they operate at different parts of the data. Since
modern GPUs have thousands of cores, when the data is correctly distributed, it is
possible to achieve speed-ups of two or even three orders of magnitude when compared
with traditional multi-core CPUs [10], depending on the nature of the problem. Modeling
the data structure as matrices allows optimal parallelization, especially in the case of
operations that have only local data dependencies and avoid code divergence, as it is in
our case.

Except for the CUDA kernel operations, Dominoes is otherwise developed in JAVA,
which includes maintaining the tiles in memory. Performing operations over these tiles
therefore, requires communicating the data with a C code, as kernels in CUDA must be
programmed using the C language. Therefore, Dominoes implements a Java Native
Interface (JNI) that is responsible for serializing and deserializing building tiles to and

6 Silva Junior, Clua, Murta, Sarma

from C. During serialization, matrices are flattened to a vector and converted back to
matrices during deserialization.

2.2. Dominoes Tiles

Dominoes includes basic building tiles, which can be combined to create derived building
tiles, which can be further combined with other basic or derived tiles. The basic building
tiles are created by extracting data from existing software repositories (version control
systems, issue tracking systems, etc.). For example, commits, issues, discussions about a
commit, or pull request can be collected from GitHub. The basic building tiles around
commits include:

• [class|method] (ClM): relationship between a class and its constituent methods,

where cell ClM[i,j] has a value of 1 when class i contains method j.
• [commit|method] (CM): relationship between commits and methods, where cell

CM[i,j] has a value of 1 when commit i adds or changes method j. Note that the
index i does not necessary express the commit id.

• [developer|commit] (DC): relationship between developers and their commits, where
cell DC[i,j] has a value of 1 when developer i is the author of commit j.

• [bug|commit] (BC): relationship between commits and bugs, where cell BC[i,j] has a
value of 1 when commit j fixed bug i.

These basic building tiles can then be combined to form a series of derived building
tiles. In the following we show a small set of derived building tiles that can be computed
using the multiplication and transposition operations:

• [method|method] (MM = CMT × CM): represents method dependencies, where

MM[i,j] denotes the strength of the dependency of method j on method i. The
rationale of this matrix is based on logical dependencies, as elements that are co-
committed together share some program logic. Note that we can also create an MM
matrix through program analysis, in which case it would be termed as a basic
building tile. Such MM matrices have been explored by Steward [11] in Design
Structure Matrices.

• [class|class] (ClCl = ClM × MM × ClMT): represents class dependencies, where
ClCl[i,j] denotes the strength of the dependency of class j on class i. Note that using
the composition tile, we can easily provide analysis results at a higher-level of
abstraction.

• [bug|method] (BM = BC × CM): represents the methods that were changed to fix
each bug. This matrix could be used to identify which methods are “buggy”.

• [developer|method] (DM = DC × CM): represents the methods that a developer has
changed. This matrix could be used to identify experts on a particular method.

 Multi-Perspective Exploratory Analysis of Software Development Data 7

• [developer|class] (DCl = DM × ClMT): represents classes that a developer has

changed. DCl uses the composition operation to provide expertise information at the
class level, which is typically used during bug triaging [3].

• [developer|developer] (DD = DM × MM × DMT): represents the expertise
dependency among developers, where developer j depends on some knowledge of
developer i, because of underlying technical dependencies in their work. Note that
here this derived building tile uses other derived building tiles (MM and DM) in its
definition.

2.3. Specialized Operations

Our basic matrices are typically binary, that is, M[i,j] is either 1 or 0 for any i and j,
whereas our derived matrices are not. This is largely because commits are atomic
transactions and therefore most associated matrices with commits are binary. In the case
of derived matrices, cell values have associated semantics. Simple operations such as
multiplication and transposition allow us to compose different types of domino tiles to
derive more complex matrices and, thereby, different software engineering constructs.
However, there are three “specialized” operations that can be applied on derived matrices
where individual cells are not binary.

Let us take the example of the MM matrix. The diagonal shows how frequently a
method has been changed and each cell (M[i,j]) shows how frequently a method (i) has
changed together with another method (j). This semantics is equivalent to the absolute
support, largely adopted in the data mining community. The support of an item set is
defined as the proportion of transactions in the dataset that contains the item set.
According to [12], the rule 𝑋⟶ 𝑌 has support s if s% of transactions contain 𝑋∪𝑌. As
this operation pattern of multiplying a matrix by its transpose is very popular and
semantically rich, we treat it as a specialized operation computed according to Eq. 1.

M!"# = M×M! (1)

The semantics of support allows us to answer software engineering related questions
regarding the strength of the relationships. For example, if we are interested in predicting
which other methods a developer needs to edit because of a change, we can use the
concept of logical coupling (files that are committed together have underlying logical
dependencies) to identify all those methods that are dependent on the edited method and
may also need to be changed. We could use the MM = MC!"# matrix to answer this
question.

Unfortunately, support is transitive, so M!"# 𝑖, 𝑗 = M!"#[𝑗, 𝑖]. Consequently, using
support to represent dependencies is not precise, as program dependency is not transitive.
In order to obtain a more precise relationship that reflects the direction of the
dependency, Zimmermann et al. [13] use confidence to represent logical coupling. This
metric suggests which artifacts should be modified together, given that a specific artifact
is being modified. According to [12] the rule 𝑋⟶ 𝑌 has confidence c if c% of

8 Silva Junior, Clua, Murta, Sarma

transactions that contain X also contain Y. In the context of our approach, when applied to
MM matrix, confidence quantifies the occurrence of an entity (e.g., method) change
given that the other entity (e.g., method) has also been changed. The confidence operator
is computed according to Eq. 2.

M!"#$[𝑖, 𝑗] =
M!"# 𝑖, 𝑗
M!"# 𝑖, 𝑖

 (2)

Confidence does not have a transitive property among elements, so it is possible to
define different levels of dependency for each pair. However, confidence suffers form
another type of problem. In the context of data mining, confidence is used to quantify
relations such as “those who buy product A also buy product B”. In this case, if product
B is presented in almost all orders, purchase of any product will lead to a high confidence
in buying B. For this reason, analyzing confidence alone tends to be imprecise, and can
exhibit false relationships.

To address this problem we can use a third metric, called as lift [12]. Lift measures
the influence of the antecedent in the frequency of the consequent. Formally, the rule
𝑋⟶ 𝑌 has lift L if the frequency of 𝑌 increases in L times when 𝑋 occurs. According to
this definition, we are interested in dependencies with lift greater than 1, as any other
value implies irrelevant (coincidental) relationships. The lift operator is defined by Eq. 3,
where the scalar multiplication by the number of commits (Mrows) transforms the absolute
support (Msup) into relative support (values ranging from 0 to 1).

M!"#$ 𝑖, 𝑗 =
M!"#$ 𝑖, 𝑗 ×M!"#$

M!"# 𝑗, 𝑗
 (3)

3. Usage Examples

In this section we introduce a simple scenario to show how data mining concepts such as
support, confidence, and lift matter when identifying artifact dependencies (Section 3.1).
Additionally, Section 3.2 exhibits how Dominoes can be used to identify expertise across
files.

3.1. Calculating Method Dependencies

Consider a scenario where three developers (Alice, Bob, and Carlos) work together on a
“geometry project”, containing four classes (Circle, Cylinder, Cone, and Shape). Circle
has a method circumf() that calculates its circumference. Shape has a method draw() to
render a shape. Finally both Cylinder and Cone have methods area() to calculate the area
of the respective shapes. Table 1 describes five commits and their change descriptions.
Table 2 shows which commits modified which methods. Note that this is an intentionally
simple example to explain the concepts in the paper.

 Multi-Perspective Exploratory Analysis of Software Development Data 9

Fig. 2 represents the support, confidence, and lift values for the MM matrix, where Ci
represents Circle.circumference(), Cy – Cylinder.area(), Co – Cone.area(), and S –
Shape.draw().

Table 1. Commits made by developers.

Commit # Developer Description

C1 Alice
Change type of function parameter to compute the

radius (Circle) and how to render it (in Shape)

C2 Carlos Change the side of Cone and how to render it

C3 Alice Change how a Shape is rendered

C4 Alice

Calculation of how circumference and area are

calculated using PI. Required modification on how
to draw a Shape

C5 Bob
Modify the height calculation of a cylinder and how
it is rendered

Table 2. Methods changed for commit.

Commit #
Circle

circumf()
Cylinder

area()
Cone
area()

Shape
draw()

C1 1 1 0 1
C2 0 0 1 1

C3 0 0 0 1
C4 1 1 1 1
C5 0 1 0 1

Fig. 2. Support, Confidence, and Lift calculated from previous scenario.

If we consider the confidence matrix, we notice that the dependency from Cy to Ci

(100% confidence – row 1 column 2) is stronger than from Ci to Cy (60% confidence,
row 2, column 1), because whenever Ci was changed it also required changes to Cy
(commits C1 and C4) (see Table 2). However, Cy was changed once without Ci (commit
C5). With such a confidence analysis we can state that Cy (always) depends on Ci, but Ci
does not necessarily depend on Cy. Therefore, using confidence to derive the DD matrix

10 Silva Junior, Clua, Murta, Sarma

would identify that Bob should communicate with Alice, but not necessary the opposite
way.

The confidence matrix also indicates high dependency from S to all other methods.
However, this occurs not because S really depends on all other methods, but because S
was independently changed in all commits (see Table 2). The lift matrix eliminates such
coincidental dependencies, keeping only dependencies between Cy and Ci, and Co and
Ci, since all other values are either equal to or below 1.

In summary, support alone is not sufficient to indicate dependencies among project
entities, but helps in eliminating dependencies that appear by chance (e.g., Co and Ci). In
a large project, with thousands of commits, thresholding on a predefined support level
can help to eliminate accidental dependencies. On the other hand, lift plays a
complementary role of identifying dependencies to elements that are very frequent (e.g.,
S) and, therefore, may be a cause of coincidental changes. Finally, confidence is
important to identify the direction of the dependency (e.g., from Cy to Ci). With such an
analysis, we find that the only real dependency in our scenario is from Cy to Ci, which
would lead to a communication requirement from Bob to Alice in the DD matrix.

Our approach, therefore, provides four distinct advantages. First, the confidence
measure allows more nuanced investigations (e.g., direction of dependency). Second, the
use of lift measure increases the accuracy of finding by filtering out common, but
unrelated changes. Third, the fine-grained analysis from the method level increases
accuracy, since we can identify dependencies among individual methods. Therefore, if
we find that Cy depends on Ci, we can find that Bob needs to coordinate with Alice, who
is working on Ci, and not another developer who is working on the same file (Circle, but
on a different method). Finally, GPU processing allows these investigations to be
performed interactively.

3.2. Identifying Expertise in a Project

In this section, we introduce our strategy for identifying Expertise of Developers (ED)
over artifacts in a project by considering the entire artifacts as an atomic element. This
strategy is vastly adopted in the literature [2], [5], [14] and is based on the frequency of
changes to an artifact (e.g., file, project, etc.) made by a given developer. Frequency of
edits has long been used as a proxy for identifying the knowledge that a developer has
about an artifact, typically a file [15]. The intuition is that the more someone has edited a
file, the more working knowledge the developer has about that file. The frequency of
edits can therefore help to answer two related questions: (1) which developer is an expert
for a given file, and (2) which files is a given developer an expert of.

Table 3 uses the same scenario from previous section but now presenting information
of which file each one has worked on ([developer|file] – DF for short). It is important to
note that we arrived at the DF matrix by operating over the basic tiles
([developer|commit] x [commit|method] x [file|method]T). The cells in the derived matrix
DF represent the number of times a developer di changed methods inside fj. Besides that,
Table 3 also shows the number of commits performed by each developer (note that it is

 Multi-Perspective Exploratory Analysis of Software Development Data 11

different from summing all columns in a row, as a commit could comprise multiple
method changes on more than one file).

Table 3. Developer x File (DF matrix).

Project Circle.java Cylinder.java Cone.java Total
Commits

Alice 14 2 20 28
Carlos 10	
 24 12 25

Bob 25 10 8 40

To answer the first expertise question (who is an expert for a given file fj), we search

for the developers who edited the file the most. This is done by scanning down the
column of fj in the DF matrix. In our simplistic example (see Table 3), if we want to
identify an expert for Cone.java, we would select Alice. Carlos would be considered as
the second most knowledgeable developer of that file.

To answer our second question, about the expertise of a specific developer di, we scan
the rows in the matrix for the highest values. In our example, we find that Alice has
expertise in Cone.java, Carlos in Cylinder.java, and Bob in Circle.java.

4. Case Study: Apache Derby

In order to evaluate Dominoes in a real environment, we perform two case studies by
using the history of Apache Derbya, an open source relational database project. The first
study shows how to calculate artifact dependencies. It also demonstrates how solely
working with support is error prone. The second study demonstrates how Dominoes can
be used for expertise identification in a project. All analyses were performed by
considering the repository data from 08/11/2004 to 01/23/2014, which in total comprises
7,578 commits, 36 distinct developers, 34,335 files, and 305,551 methods committed
during approximately 10 years. The case study was performed at the file-level for easier
interpretation of the results. However, as discussed before, Dominoes can easily navigate
from coarse to fine-grained analysis and vice-versa by using the “composition” operation.

4.1. Calculating dependencies in Derby

We first create the MM matrix (dependencies between methods based on co-commit
information) and then apply the composition operation to calculate the ClCl (class to
class) matrix. We found that in Derby a file was associated with only one class, therefore,
for our purposes the ClCl matrix is the same as the FF ([file|file]) matrix. We then applied
the confidence and lift analysis on this matrix. We found that due to the characteristics of
Derby, the lift analysis does not filter out any coincidental dependencies. This is because
the Derby file dependencies are highly clustered, causing low support and a very high lift.
When we filter the lift values by thresholding it with “1”, no data points were eliminated.
Therefore, here we restrict our discussion to the support and confidence analysis results.

a Derby Repository: https://github.com/apache/derby.

12 Silva Junior, Clua, Murta, Sarma

Table 4 presents the top 5 logical dependencies in terms of support and with the
biggest difference in confidence. It is important to remember that confidence is not
transitive.

Considering the first case as an example, it is possible to observe that using the
common approach that is based on support, artifacts DataDictionary.java and
DataDictionary-Impl.java would be considered as dependent to each other as they have a
high support (in fact, 79 is the highest value of absolute support in the whole system).
However, when observing the confidence, it is possible to see that only
DataDictionaryImpl.java has dependency with DataDictionary.java, which is reasonable
as changing a method implementation normally does not result in a change to its
interface. The following two rows are also interface/implementation cases, presenting the
same behavior. In the fourth row, we have a composition case, where
DRDAConnThread.java possesses a DRDAStatement.java instance. In this case,
modifying the former does not necessary imply a modifications in the latter. However,
there is a high likelihood of a related change in the opposite direction, that is,
modifications in DRDAStatement.java can change method signatures used by
DRDAConnThread.java, for instance.

Finally, the last case is a class specialization, which normally requires modification to
both files, with a slightly higher dependence from the subclass to the superclass. These
analyses show the importance of using confidence to identify the direction of the
dependencies.

Table 4. Top 5 logical dependencies in terms of high support and biggest confidence
difference.

Artifact A Artifact B
Support Conf.

(A-B)

Conf.

(B-A)

DataDictionary.java DataDictionaryImpl.java 79 0.88 0.37

DD_Version.java DataDictionaryImpl.java 45 0.78 0.21

LanguageConnectionConte
xt.java

GenericLanguageConnectio
nContext.java

44 0.86 0.48

DRDAConnThread.java DRDAStatement.java 37 0.22 0.68

ResultSetNode.java SelectNode.java 36 0.54 0.45

 Multi-Perspective Exploratory Analysis of Software Development Data 13

Fig. 3. Relation among confidence for various support threshold. The leftmost chart considers a threshold of 10,
while the middle uses 20, and finally the rightmost uses 30.

Besides these five top dependencies, Fig. 3 presents a scatter plot chart with all
dependencies at three specific support levels (10, 20, and 30). This chart plots each
dependency according to its confidence in both directions (A-B and B-A). This way,
dependencies with the same confidence value in both directions are plotted along the
diagonal. As we can see, however, there are several cases where points are located far
from the diagonal. When we consider the rightmost chart in Fig. 3 (support threshold at
30) for discussion, we can observe some distinct patterns. The red quadrant shows that
both conf(A-B) and conf(B-A) are less than 0.5, thus containing weak bidirectional
dependencies. The yellow quadrant, on the other hand, shows dependencies where both
conf(A-B) and conf(B-A) are above 0.5, thus containing strong bidirectional
dependencies. Finally, the green and blue quadrants show unidirectional dependencies
with highest divergences among confidence. In this case, dependencies from these
quadrants can be erroneously classified as bidirectional if we solely use support to
analyze dependencies.

Performing an analysis such as the one in Fig. 3 can unveil how inaccurate
dependencies extracted from support-based approaches tend to be. As demonstrated for
the Derby project, only dependencies in the yellow-quadrant should be classified as
bidirectional. Both blue and green quadrants present unidirectional dependencies.

In this evaluation, the CCl (i.e., [commit|class]) matrix was of size 7,578 × 34,335.
The generation of CClsup and CClconf using GPU (NVidia GeForce GTX 580) took about
0.2 minutes. However, performing the same computation using CPU (Intel Core 2 Quad
Q6600) took 413 minutes. This shows that we get a speedup of three orders of magnitude
when using GPU – with just the simple calculation that requires one transposition and
three multiplication operations. Similarly, when we process MC (i.e., [method|commit]),
with size of 305,551 × 7,578, it takes about 0.3 minutes in GPU. This calculation was
infeasible to do so in a reasonable amount of time when processed on CPU (after waiting
for 720 minutes). This makes CPU processing of data infeasible when analyzing fine-
grained project data.

14 Silva Junior, Clua, Murta, Sarma

4.2. Identifying expertise in Derby

Expertise of a developer is processed by analyzing the data about methods that were
modified (and committed) by a developer. However, here we present the results at the
granularity of files for simplification of presentation, with out any loss of generalization.
Further, we discuss results for the files shown in Table 4. The expertise of a developer for
these files is presented in Fig. 4.

When we go back to the two expertise questions that we stated earlier in Section 3.2,
we can find the answer for the first question (which developer is an expert for a given
file?) by examining the developer who most committed the file under consideration.
Using the set of artifacts presented in Table 4 among its specific relationships (the first
three rows represent interface/implementation; the fourth represents a composition; and
the last row represents specialization), it is possible to observe from Fig. 4 that Richard
has the highest expertise in DataDictionary.java and DataDictionaryImpl.java. This
result suggests that he has the highest expertise in the interface as well as its
implementation. The same phenomenon is observed for DD_Version.java and
DataDictionaryImpl.java, where the developer with the higher expertise (also Richard) is
the same for the interface and its implementation. For the third interface/implementation
case, represented by files LanguageConnectionContext.java and

Fig. 4. Expertise of developer for files listed in Table 4. Each bar in the chart represents the total percentage of
changes to a file, where each segment displays the number of commits made by a developer (color coded).

 Multi-Perspective Exploratory Analysis of Software Development Data 15

GenericLanguageConnectionContext.java, we find that there are two experts – Dag and
Daniel, respectively.

The composition case (represented in the fourth line of Table 4) between
DRDAConnThread.java and DRDAStatement.java is also reflected in Fig. 4, as it is
possible to see that Knut is the only expert in DRDAConnThread.java while
DRDAStatement.java has Katherine as the highest expert. An implication of this finding
about no other person having expertise over DRDAConnThread.java is that if Knut
would leave the project then others in the project will have trouble to maintain
DRDAConnThread.java. An advantage of using Dominoes is that project managers can
use such information to being proactive and ensure that there are enough experts for each
file in the project (or at least for the crucial files in the project). Finally the specialization
case (last row in Table 4) represented by ResultSetNode.java and SelectNode.java has
different expert developers: Katherine for the former, while Dag has the highest expertise
for the latter.

Finally, answering the second question (which files is a given developer an expert
of?) requires locating in the chart which file a developer has the most expertise in the
project. We find that Richard and Daniel have the most expertise in
DataDictionaryImpl.java; Dag in GenericLanguageConnectionContext.java; Knut in
DRDAConnThread.java (and also being the only expert in this file), while Katherine and
Bernt have the most expertise in DRDAStatement.java.

Identifying expertise of developers on a set of 34,335 files among 36 developers in
the project (34,335 × 36 matrix size) takes about 0.1 minute when using GPU in
Dominoes. When we performed the same operations using CPU (and keeping everything
else the same) it took a total of 324 minutes.

5. Related Work

Determining Dependencies can be done by numerous approaches that focus on
identifying structural dependencies (through syntactic analysis) or logical dependencies
(through change history) amongst artifacts. Cataldo et al. [14] stands out as they use
matrices to process dependencies among developers based on dependencies among
artifacts. In their approach, both structural dependencies and logical dependencies
become Task Dependency (TD) matrices, and change requests, associating developers to
artifacts, becomes Task Assignment (TA) matrix. These matrices are used in an equation
that indicates coordination requirements 𝑇!×𝑇!×𝑇!!. Our approach generalizes this idea
by allowing different kinds of exploration over matrices. Finally, our identification of
relationships is innovative, as it allows combining support, confidence, and lift, to
compose the dependency matrix depending on the analysis need.

Exploratory Data Analysis tools provide either predefined questions or are very
limited to derive information that was not conceived beforehand. In the case of Tesseract
[2], for example, the available relationships are preprocessed and the matrices are fixed at
a coarse grain (file-file, file-developer, file-bug, bug-developer). CodeBook [3] follows a
similar approach that builds a graph of all relationship, which can then be used by

16 Silva Junior, Clua, Murta, Sarma

applications for answering specific questions (e.g., identifying related developers or
artifacts). Gall et al. [16] built a tool for mining software archives at a fine grain in order
to compare source code changes. From these analyses, recommendations such as change
type patterns and consistency of changes can also be made. Dominoes allows for a wide
open set of questions that can be answered based on how the relationships are composed
by the user during exploration. Also, our architecture in modeled in a way that any
repository can be plugged into the system, avoiding the necessity to build a new tool.

Recommender Systems are approaches designed to help decision-making. McDonald
and Ackerman [4] introduced Expertise Recommender (ER), which is based on two
heuristics for recommending developers for specific tasks: tech support and change
history. The tech support heuristic uses an issue database to search for similar situations
and recommends the people involved in previous situations. The change history heuristic
states that the last person that changed an artifact is a good candidate for changing it
again. Unfortunately, the latter heuristic places a high weight on the most recent changes
and ignores the past, which might affect the quality of the recommendations. Anvik et al.
[17] deal with the problem of recommending developers for a specific issue by using
machine learning techniques exclusively over an issue database, avoiding dealing with
source code artifacts. Kagdi et al. [18] proposed a system for assisting in the tasks of
allocating developers for changing a given file. It considers three metrics to compose a
ranked list of recommended developers: contribution, activity, and recency of changes.
The contribution metric indicates the number of commits each developer has made for a
file. The activity metric indicates the number of days the developer has committed at
least once in the project. The recency metric indicates the date of the last commit of each
developer. This approach works only at coarse grain (i.e., files) and is not designed to
support online exploratory analysis. Instead of a recommendation system, Dominoes
provides a generic and flexible platform for exploratory analysis of project elements at
any granularity level, which is compatible with multiple data types and relationships. Its
interactive capabilities are mainly possible due to the adoption of the massively parallel
architecture of the GPU.

6. Conclusion

Dominoes is an exploratory data analysis approach that allows users to select information
about different project elements and their interrelationships from a repository.
Relationships are represented by matrices, defined as basic building tiles and derived
building tiles. Both kinds of building tiles can be combined iteratively to reveal deeper,
complex relationships. Through such explorations, relationships that have not been
computed or published before can be discovered via operations over these building tiles.
As all operations are performed in parallel over GPU, exploratory analysis can occur
seamlessly at interactive rates, even when computing relationships in fine-grained data.
The current version of Dominoes tool extracts data from a Git repository and operates
over the matrices by using GPU kernels implemented in CUDA.

 Multi-Perspective Exploratory Analysis of Software Development Data 17

Our evaluation contrasted the use of support alone and the use of support and
confidence to distinguish the dependence directions. In the case of Apache Derby,
employing confidence leads to a more accurate analysis for finding dependencies among
artifacts. Moreover, using confidence for thresholding a relationship is more natural for
the user, as it represents a normalized value. Besides that, we demonstrated how we can
identify an expert developer for a file in a project. This information can be valuable
during task assignment, where a task needs to be assigned to a developer who knows the
content (file) best; as well as during development, where a developer may seek help from
an expert.

The Dominoes architecture was intentionally designed to easily accommodate the
definition of new basic building tiles, such as relationships mined from communication
channels (e.g., email, chat, discussion forums). The same extensibility feature also
applies for operations. Besides the basic matrix operations, such as multiplication and
transposition, specialized operations can also be easily created and plugged into
Dominoes, as showed in section 2.3 for support, confidence, and lift. This makes
Dominoes a key contribution to the scientific community, as empirical studies can be
reproduced over different corpora in order to validate an investigation. This has the
potential of alleviating the pain of setting up an environment for each trial of an
investigation.

Although we currently use matrices and GPU underneath Dominoes, other data
representations and execution environments could be adopted in the future. For example,
relational algebra is a compelling alternative to link sparse data. Moreover, SMP is the de
facto architecture of modern personal computers. In this case, some kinds of analysis,
such as reachability (used in impact analysis), can heavily benefit by operating over
matrices in GPU.

A concept not discussed in this paper, which is currently under development, is the
use of three-dimensional (3D) building tiles. These 3D building tiles represent time as the
third dimension over the matrices. We posit that using this additional dimension would
allow us to observe the evolution of relationships in the project over time. Another
ongoing work is on creating visualizations of basic and derived building tiles both in two
and three dimensions to support visual explorations of data by end users.

Acknowledgments

This work is partially supported by CNPq, CAPES, FAPERJ, and NSF (awards HCC-
1110916, 1314365, and CCF-1253786).

References

[1] T. Fritz and G. C. Murphy, “Using Information Fragments to Answer the Questions
Developers Ask,” in Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 1, New York, NY, USA, 2010, pp. 175–184.

[2] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb, “Tesseract: Interactive visual
exploration of socio-technical relationships in software development,” in Proceedings of the

18 Silva Junior, Clua, Murta, Sarma

31st International Conference on Software Engineering, Washington, DC, USA, 2009, pp.
23–33.

[3] A. Begel, Y. P. Khoo, and T. Zimmermann, “Codebook: Discovering and Exploiting
Relationships in Software Repositories,” in Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 1, New York, NY, USA, 2010,
pp. 125–134.

[4] D. W. McDonald and M. S. Ackerman, “Expertise Recommender: A Flexible
Recommendation System and Architecture,” in Proceedings of the 2000 ACM Conference on
Computer Supported Cooperative Work, New York, NY, USA, 2000, pp. 231–240.

[5] S. Minto and G. C. Murphy, “Recommending Emergent Teams,” in Fourth International
Workshop on Mining Software Repositories, 2007. ICSE Workshops MSR ’07, 2007, pp. 5–5.

[6] J. Krüger and R. Westermann, “Linear algebra operators for GPU implementation of
numerical algorithms,” in ACM SIGGRAPH 2003 Papers, New York, NY, USA, 2003, pp.
908–916.

[7] S. Rajasekaran, L. Fiondella, M. Ahmed, and R. A. Ammar, Multicore Computing:
Algorithms, Architectures, and Applications. New York, NY: CRC Press, 2013.

[8] J. R. da Silva, T. Pacheco, E. Clua, and L. Murta, “A GPU-based Architecture for Parallel
Image-aware Version Control,” in 2011 15th European Conference on Software Maintenance
and Reengineering, Los Alamitos, CA, USA, 2012, vol. 0, pp. 191–200.

[9] J. R. da Silva Junior, L. Murta, E. Clua, and A. Sarma, “Exploratory Data Analysis of
Software Repositories via GPU Processing [Unpublished Manuscript],” in Proceedings of the
26th International Conference on Software Engineering and Knowledge Engineering, 2014.

[10] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron, “A Performance Study
of General-purpose Applications on Graphics Processors Using CUDA,” J Parallel Distrib
Comput, vol. 68, no. 10, pp. 1370–1380, Oct. 2008.

[11] D. V. Steward, “The design structure system: A method for managing the design of complex
systems,” IEEE Trans. Eng. Manag., vol. EM-28, no. 3, pp. 71–74, 1981.

[12] W.-Y. Lin, M.-C. Tseng, and J.-H. Su, “A Confidence-Lift Support Specification for
Interesting Associations Mining,” in Advances in Knowledge Discovery and Data Mining,
M.-S. Chen, P. S. Yu, and B. Liu, Eds. Springer Berlin Heidelberg, 2002, pp. 148–158.

[13] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining version histories to guide
software changes,” Softw. Eng. IEEE Trans. On, vol. 31, no. 6, pp. 429–445, 2005.

[14] M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-technical congruence: a framework for
assessing the impact of technical and work dependencies on software development
productivity,” in Proceedings of the Second ACM-IEEE international symposium on
Empirical software engineering and measurement, New York, NY, USA, 2008, pp. 2–11.

[15] J. Anvik and G. C. Murphy, “Reducing the Effort of Bug Report Triage: Recommenders for
Development-oriented Decisions,” ACM Trans Softw Eng Methodol, vol. 20, no. 3, pp. 10:1–
10:35, Aug. 2011.

[16] H. C. Gall, B. Fluri, and M. Pinzger, “Change Analysis with Evolizer and ChangeDistiller,”
IEEE Softw, vol. 26, no. 1, pp. 26–33, Jan. 2009.

[17] J. Anvik, L. Hiew, and G. C. Murphy, “Who Should Fix This Bug?,” in Proceedings of the
28th International Conference on Software Engineering, New York, NY, USA, 2006, pp.
361–370.

[18] H. Kagdi and D. Poshyvanyk, “Who can help me with this change request?,” in IEEE 17th
International Conference on Program Comprehension, 2009. ICPC ’09, 2009, pp. 273–277.

