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Abstract

Context: Recruiters and practitioners are increasingly relying on online activities of developers to find a suitable
candidate. Past empirical studies have identified technical and soft skills that managers use in online peer production
sites when making hiring decisions. However, finding candidates with relevant skills is a labor-intensive task for managers,
due to the sheer amount of information online peer production sites contain.

Objective: We designed a profile aggregation tool—Visual Resume—that aggregates contribution information across
two types of peer production sites: a code hosting site (GitHub) and a technical Q&A forum (Stack Overflow). Visual
Resume displays summaries of developers’ contributions and allows easy access to their contribution details. It also
facilitates pairwise comparisons of candidates through a card-based design. We present the motivation for such a design
and design guidelines for creating such recruitment tool.

Method: We performed a scenario-based evaluation to identify how participants use developers’ online contributions
in peer production sites as well as how they used Visual Resume when making hiring decisions.

Results: Our analysis helped in identifying the technical and soft skill cues that were most useful to our participants
when making hiring decisions in online production sites. We also identified the information features that participants
used and the ways the participants accessed that information to select a candidate.

Conclusions: Our results suggest that Visual Resume helps in participants evaluate cues for technical and soft
skills more efficiently as it presents an aggregated view of candidate’s contributions, allows drill down to details about
contributions, and allows easy comparison of candidates via movable cards that could be arranged to match participants’
needs.

Keywords: Aggregators, Contribution profile, Online Communities

1. Introduction ney Pell, the founder of Powerset said, “online open-source
) o , ) ) communities like GitHub bring large numbers of develop-
When it comes to hiring, I'll take a GitHub commit  opg together and are thus a natural place for recruiting”

log over a resume any day”[1] tweeted John Resig, the [3]. Several research studies have also confirmed the use
creator of jQuery. Assessing online contributions has be-  of GitHub to recruit developers [2, 4-9].

come increasingly popular with the growing popularity of A key reason behind the popularity of these peer pro-
peer-production sites such as GitHub and Stack Overflow. duction sites as hiring aids is the level of transparency
Potential employers, as well as recruiters, are increasingly afforded by them. For example, sites like GitHub, al-
mining the history of public contributions to locate suit- lows access to in-depth details about developers’ activi-
able candidates, filter through applicants for a position, ties: lines of code committed, issues resolved, code re-
or inform interview interactions [2]. For example, Bar- views performed, and interactions and discussions around
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the code that the developer participated in. Research has
shown that managers and developers use such information
to form impressions of new employees or their colleagues
when evaluating them [2, 4] or their code [10]. For in-
stance, the contribution history allows reconstructing what
is the developer working on, what their code looks like,
their frequency and speed of work, and how they work and
interact [5]. Non-technical skills such as developer’s moti-
vation/passion can also be inferred based on the projects
they own, have contributed to, or the diversity of projects
or languages in which they are involved [2, 4]. Similarly,
collaboration skills can be assessed through discussions or
code review comments, as these reveal how developers talk
about their work or negotiate changes to their project.

However, assessing the online contributions of poten-
tial job candidates is not easy. Such evaluations require
hirers to process a massive amount of information that is
often fragmented across multiple projects or even differ-
ent types of archives (e.g., code hosting sites vs. technical
question and answer (Q&A) forums). Hence, creating the
problem of information overload and increased cognitive
load because of frequent context switching between the
archives. Potential employers, who have limited time and
many applicants to review, are unlikely to spend signif-
icant amounts of time searching online archives. Marlow
and Dabbish [4] found that employers assessed those online
activities that were “low-effort”. In the majority of cases,
employers did not investigate the contribution or inter-
action details, and instead focused only on the aggregate
amounts of activity, despite identifying interaction style
and type of contributions as important factors for hiring
decisions [4].

To alleviate the problem of excessive information load,
researchers and practitioners have developed various tools
for quickly evaluating developers’ online activities, e.g.,

CVExplorer [6], Statocat [11], and MasterBranch [12]. These

tools leverage developers’ online activity traces, but still do
not provide an integrated view of activities across various
platforms (see Section 8). This is a problem since devel-
opers tend to be active on multiple technical platforms.

To address these challenges, we designed a profile ag-
gregation tool, Visual Resume, that aggregates the activity
traces of developers across different types of contributions
and repositories into a single developer profile. Visual Re-
sume goes well beyond the current state-of-the-art aggre-
gator sites by: (1) aggregating data across two different
types of peer-production sites—GitHub and Stack Over-
flow, (2) creating profiles that not only provide overviews
of activities, but also allow deeper exploration of contri-
butions that are contextualized and easy to access, (3)
extracting and visualizing quality attributes of contribu-
tions, and (4) allowing side-by-side comparison of contrib-
utors and different types of contributions.

We designed and evaluated an initial prototype of Vi-
sual Resume to study how employers (those experienced
with hiring) can use aggregators and formatively evalu-
ated it in [13]. Based on this evaluation and participants’

feedback, we extended the prototype to include additional
features for assessing the quality of contributions. In this
paper, we present: (1) the set of design guidelines for creat-
ing aggregators, (2) an extended version of Visual Resume
and its implementation details, (3) a user study compar-
ing evaluation of “job candidates” via GitHub and Stack
Overflow, and with Visual Resume, and the set of cues
that participants used when making their evaluation.

2. Background

A developer’s technical and social skills are crucial for
their effectiveness in a team, especially in a global set-
ting [14-16], where differences in organizational culture
can make it challenging to build a working (trust) relation-
ship [17]. Numerous studies have found that trust among
team members allows them to work effectively [18, 19].
Past interviews of respondents in global development set-
tings have identified the characteristics that people look for
when evaluating the fit of a new team member and if they
can be trusted, namely: technical competency, collabora-
tion and communication proficiency, and how passionate
they are about the project [14, 18]. Similarly, research
on recruitment in online communities has found technical
and social skills play an important role in making hiring
decisions [2, 4, 20, 21]. Here, we summarize how different
types of skill sets are used for evaluating job candidates
by reviewing the literature (see Table 2).

Technical Skills These are developers’ skills related to
writing code and the quality of the code. Technical skills
can be further divided into two areas.

Coding Competency, the primary qualifications of any
software developer include their programming knowledge
and coding ability. The level and amount of past activ-
ities (in a project or programming language) indicate an
individual’s experience level [5, 18]. Managers seek the
following cues from an online environment: (1) owned
and forked projects, (2) frequent contributions to projects,
such as providing commits or answering questions, and (3)
the number of languages in which a candidate is proficient.

Quality of Work, the quantity of an individual’s contri-
butions must be understood alongside their quality, which
can signal a candidate’s competence and skill level [4].
Quality is a subjective measure, and its signals can range
from code reviews to test coverage metrics. While man-
agers most frequently use the actual lines-of-code produced
(or the post), other criteria exist. For example, contribu-
tions that include test cases can indicate a well thought out
contribution [2, 22]. Similarly, information about whether
the community accepted a candidate’s work (e.g. com-
mits) can also indicate quality [4, 21].

Soft Skills These are the non-technical skills related to
motivation, project management skills and collaboration
proficiency of developers. Soft skills can be divided into
three categories.

Collaboration Proficiency, when deciding to collabo-
rate or trust others, key factors include whether the person



Quality Inferred Quality Cues

Level and amount of past visible activity
- Number of projects owned or forked

- Number of commits/issues/comments

- Frequency of commits/issues/comments
- Programming language used

Coding

Tech Competency

Skills

Content of the contribution
Community acceptance of the work

- Number of accepted commits/answers
Test case inclusion

Quality
of Work

Visible communication activity

- Number of comments/answers/questions
- Types of comments/answers/questions
Endorsement of contributions

- Number of followers

- Reputation scores

Collaboration
Soft Proficiency
Skills

Project

Management Number of projects owned

Recency and volume of commits/issues/
comments

- Number of commits/issues/comments

- Recency of commits/issues/comments
Number of non-work-related side projects
Diversity of skills

- Number of programming language

- Number of contributed projects

Moivation

Table 1: Candidate Qualities and Activity Traces

is polite or arrogant, and whether they are willing to help
others and provide sufficient context to make their solu-
tion useful [14]. An individual’s interaction histories can
indicate whether she helps others and what she is like to
work with [5, 23, 24]. Developer activities that serve as
cues for (positive) interactions include: (1) comments re-
garding issues, (2) answers or questions submitted in Q&A
forums, and (3) details about the nature of these activi-
ties, such as whether developers provide polite, articulate,
and helpful answers. Endorsements also can be used as a
proxy to assess collaboration ability [2].

Project Management Ability, managers prefer candi-
dates who have some management skills [25]. When some-
one owns a project, they need to set the projects overall
design, manage incoming contributions, and interact with
potential contributors [4].

Motivation/passion, an important trait of volunteer con-
tributors is their passion. Studies [18, 26, 27] show that
motivation and performance are deeply connected: highly
motivated individuals are more likely to perform better
and influence future engagement. It has also been found
that developers are likely to trust colleagues who are pas-
sionate about their work. A developer’s motivation can be
indicated by: (1) the recency and volume of activities (e.g.
commits, issues, comments) across projects, (2) the num-
ber of owned or forked projects, which are not directly
related to the developer’s own work, but are done as a
hobby or for fun [4], (3) the diversity in languages that a
developer is comfortable with and the diversity in projects
they take on (e.g., different technologies and programming
languages) [2]. Research has found that employers and de-
velopers have started using online project hosting sites to
evaluate job candidates [4] or to assess the performance of

their colleagues [2, 22]. Since contributions in online peer
production sites are archived and maintained by a third
party, they are seen as assessment signals that are hard to
fake [26], and managers prefer them over static resumes or
out-of-context code samples [2, 4].

However, the amount of effort that is required to reli-
ably assess the skills of a developer using online activities
is non-trivial. To evaluate the lines of commit in GitHub,
one must first identify the projects to which a developer
has contributed from their profile and then navigate to spe-
cific projects. Once on the project page, one must scroll
through all the commits in the project to find the devel-
oper’s commits, which can be located by recognizing their
user-id. Clicking on the commit-id takes the user to a page
where the lines of code changed are listed. If there are mul-
tiple commits, one has to keep scrolling through the list to
identify the commits from a particular developer.

Marlow and Dabbish [4] found that evaluators did not
assess the actual lines of code changed, but instead used
their perception of the reputation of the project as a proxy
for the quality of a developer’s contributions. This was es-
pecially true if a contribution to a high-status project did
not appear in the top recent activities of the project, since
this would entail scrolling through hundreds of commits
to identify the commit from the developer. Assessing de-
veloper interactions requires even more effort. To evaluate
the discussions around a code snippet, one must first iden-
tify the pull request associated with the commit (and the
lines of code) and then read the discussion around it. In
fact, most evaluators did not assess information regarding
developer interactions when forming hiring impressions in

GitHub [4].

3. Guidelines for Creating Visual Resume

Designing a tool that allows exploration and assess-
ment of developers’ skills from online contributions re-
quires answering the following questions:

Question 1: What information should we display? Past
studies (Table 2) have found that both technical and soft
skills are important in a candidate; and developers con-
tribute to multiple projects and different types of content.
While a few initial aggregator sites exist [2], they only
provide activity overviews: projects and programming lan-
guages that a developer has contributed to or owns, and
overall commits. To assess contribution details, one still
must exert the manual effort to navigate to the developer’s
profile or the project page.

Question 2: How should we present information that
is contextualized to the project, easy to access, and allows
comparison? Typically, employers first screen develop-
ers based on the quantity of their contributions, and then
perform a detailed comparison on a subset of developers
[28]. This indicates that profiles not only need to present
a high-level overview, but also allow easy access to details
about contributions in a manner that facilitates compari-
son across candidates.



3.1. What to Present?

The following guidelines are derived from the cues that
managers and hires are known to use when making their
decisions, as aggregated in Table 1.

DG 1: Aggregate cues across projects and sites.
Aggregating individuals’ public activities across online com-
munities can help build more accurate profiles [5]. There
are two reasons for this. First, aggregating activities across
communities overcomes the problem of fragmentation. That
is, developers may be active in one community, but inac-
tive in others. Such a developer’s profile will be inaccurate
if only one community (or one type of skill) is considered.
Second, aggregating data from different sites into one site
helps solve the problem of disparate design across sites.
That is, project managers do not have to navigate through
different site designs and can therefore be more efficient.
But, more importantly, developer profiles will be consis-
tent, thereby avoiding the formation of biased impressions
because of differences in how individual sites highlight spe-
cific contribution types.

DG 2: Provide cues for both technical and soft
skills. Project managers make use of activities involving
both the technical practices and the social communication
(soft skills) when evaluating contributions [22]. A devel-
oper’s complete profile should include activities that signal
both types of skills (see Table 1) to project managers.

DG 3: Provide cues for quality. In addition to
quantity of contributions, it is also important to reflect
the quality of a developer’s work [4]. Table 1 lists a set
of cues that can be used to assess quality. For example,
the quality for a developer’s answers in Stack Overflow
can be measured by whether their answers were accepted
or up-voted; the quality for commits in GitHub can be
signaled through whether their pull requests (or commits)
were accepted (or merged), and whether the contributions
contained test cases.

DG 4: Present social standing in the commu-
nity. Many sites include badges or reputation points to
motivate their users to participate. Stack Overflow users
accrue reputation points when their contributions are ac-
cepted. Similarly, GitHub developers collect followers if
their projects are interesting or perceived as high-quality
work [22]. These endorsements serve as proxies for the
candidate’s overall amount and quality of work. However,
it is best to provide community-derived reputation values,
as they are likely to be more trustworthy [28].

3.2. How to Present?

We recommend that contribution information be dis-
played through the following mechanisms.

DG 5: Summarize activity. Activities are archived
over time, but large volumes of archived activity can over-
whelm a user. Concisely summarizing expertise based on
types of activities ameliorates this issue and reduces the
burden of investigating profiles to assess developers’ ex-
pertise and contributions. For example, summaries of lan-
guages used, projects contributed to, and commits can

help project managers assess developers’ technical skills.
Summaries of comments, questions and answers can help
project managers examine developers’ soft skills.

DG 6: Visualize summaries. Project managers fa-
vor cues that take less effort to verify [4]. Visually sum-
marizing activities can help project managers quickly as-
sess developers’ quality and allow them to view activities
over time. For example, a visual summary of accepted
versus unaccepted commits can give project managers an
overview of the quality of a developer’s contributions. Sim-
ilarly, developers’ soft skills can be judged by viewing a vi-
sual summary of answers versus questions or forked versus
owned projects.

DG 7: Allow drill down. Detailed activity infor-
mation can shape the evaluation outcomes for complex
contributions [29]. However, since project managers fa-
vor cues that take less effort [4], activity summaries can
decrease the effort to access information indicating work
quality. For example, in order to assess a developer’s cod-
ing ability, project managers may be interested in looking
at not only the summary of their commits, but also the
source code related to all or some of their commits.

3.3. How to Compare?

We recommend the following interaction mechanisms
to effectively and efficiently evaluate candidates.

DG 8: Allow quick and detailed assessment.
Project managers often first filtering candidates by assess-
ing summaries of technical activities and then taking a
more detailed look at activities to assess the experience
and social skills of a candidate [2]. In other words, they
initially skim through candidates and then perform a more
detailed pass.

DG 9: Allow pairwise comparison. Past studies
have shown that pairwise comparison is a key recruitment
strategy [28, 30]. Project managers typically develop a
list of desired knowledge, skills, and abilities, and then
use pairwise comparisons to reveal the relative priority of
potential candidates.

4. Visual Resume

Visual Resume provides concise summary information
about developers’ activities to allow a quick assessment of
their skills (DG 8) and facilitate comparison across can-
didates (DG 9). The source code for Visual Resume can
be found at [31]. It uses a card-based design that summa-
rizes contribution histories from two types of online peer
production sites (code-based and Q&A) (DG 5)and allows
quick drill down to specific contributions (DG 7). In this
section, we present the design process behind Visual Re-
sume, the information that it uses to create developer pro-
files, and its user interface.



4.1. Design of Visual Resume

We first identified the information that should be part
of the developer profile by leveraging the cues identified
from the literature and summarized in Table I. Addition-
ally, we conducted interviews with two industry contact
team leads with extensive hiring experience. We asked
them about current practices when making hiring deci-
sions and how they evaluated online contributions. We
then asked them to select the most relevant cues from Ta-
ble 1. Before implementing the tool, we conducted two
rounds of paper prototyping by creating wire-frame mock-
ups for the tool. The paper prototype evaluation was done
with other researchers in the group.

We then implemented the first version of Visual Re-
sume, which was formatively evaluated by nine industry
partners (P1-P9); the details of this evaluation can found
in our prior work [13]. The results of this evaluation
showed that (all nine) participants used the summarized
views to create overall impressions and then drilled down
for a deeper view of the contributions’ contents. Partici-
pants recommended including contribution quality metrics
as part of the developer profile. For example, one of our
participants (P4) mentioned, “../while looking at the ac-
tivity/ this is meaningless without quality...how can he have
fixzed anything if there is no code in the commit.”

We therefore extended Visual Resume to include met-
rics for quality of contribution. Additionally, we synthe-
sized the set of design guidelines from the literature, our
experiences in building the initial version of Visual Re-
sume, and the feedback from participants. We used these
design guidelines when extending Visual Resume. In the
rest of this section, we describe the design and implemen-
tation of the second version of Visual Resume.

4.2. Contributor Profile

Visual Resume summarizes the following pieces of in-
formation as part of the developer profiles.

4.2.1. Historical Activities

Developers’ activity histories gather activity traces in
terms of issues, comments, commits, questions, answers,
and join period (DG 2). These activities are obtained by
mining issue tracking systems and version control systems
(DG 1). Questions and answers also can be collected from
online Q&A forums.

Issues: issues refer to bugs and contributions of new
code that are submitted by developers and stored in issue
tracking systems. For each developer, we collect the total
number of issues they submitted and the total number of
issues they closed before a specific timestamp.

Comments: comments are discussions created in a
project’s issue tracker. These discussions often focus on
resolving specific issues and are technical in nature. We
collect the total number of comments created by each de-
veloper before a specific timestamp (comments).

Commits: Commits refer to changes of source code
performed to resolve related issues and improve features.
They are saved in version control systems. We collect the
total number of commits that are submitted to the version
control system by each developer and the total number of
commits that are committed by each developer before a
specific timestamp.

Questions: Developers pose questions to seek help
from others, often in regard to programming. We collect
the total number of questions asked by each developer be-
fore a specific timestamp.

Answers: Developers provide detailed answers to ques-
tions to earn reputation. Accepted or voted up answers
can earn a higher reputation score. We collect the total
number of answers that are submitted to the Q&A forum
by each developer before a specific timestamp.

Join Period: we collect this information both from
the version control system and the Q&A forum.

4.2.2. Quality of Work

The quality metrics that we use is derived from cues for
quality of work as described in Table 3. We measure the
quality of developers’ work from the following five metrics:
centrality, passed tests, closed issues, merged pull requests,
and accepted answers. (DG 3)

Centrality: centrality is to measure whether develop-
ers make core contributions i.e., contributions that span
multiple files in the code base and can be of high im-
pact [32, 33]. We are interested in identifying the cen-
trality of each commit made to the project’s source code
repository. Source code can be thought of as forming a
network of different files that are connected to each other.
One common metric for computing the centrality of each
file in the project is eigenvector centrality [34]. Then the
source code file level centrality needs to be translated into
commit centrality. As commits made by developers often
touch multiple code files, we define each commit’s central-
ity as the mean of the centrality of each of the code files
that are related to the commit. From this we generate
a centrality score for each commit. A commit with high
centrality scores deals with files that are closer to the core
of the project than those with low centrality scores.

Passed tests: passed tests indicate whether commits
made by the developer are successfully compiled and pass
the tests. We use the following procedure to verify every
commit:

1. Check a commit: we use git commands — “git reset
—hard, git clean —xdf, git checkout” — to return to a
specific commit and check it.

2. Compile and run all tests: this step is to verify the
commit by calling out compiling and testing systems
(e.g. Maven , Ant , rails-dev-box ).

3. Process the results: finally, we retrieve the past-test
status of the commit by checking the output result,
allowing us to see whether the build and test for the
commit succeeded.



Closed issues: issues are used to keep track of bugs,
enhancements, ideas, or other requests. This metric re-
veals whether issues submitted by the developer are closed
or still open. Once the bug is fixed, the new contribution
can be merged, or once the request is accomplished, the
related issue is closed.

Merged pull requests: pull requests are a type of is-
sue. However, pull requests involve changes the developer
has pushed to a repository. Once a pull request is opened,
the changes are fully discussed and reviewed by collabo-
rators and other contributors before they are merged into
the repository.

Accepted answers: an accepted answer refers to the
answer that is marked as such by the person who asked it.

4.2.3. Other Cues

Endorsement: It is the metrics for trust of the com-
munity members and can be unique to socio-technical plat-
forms. We collect the number of followers from the version
control system and the reputation score from the Q&A fo-
rum. (DG 4)

Projects/languages: To assess the breadth of a de-
veloper’s experience, we collect the number of owned or
forked projects from version control system. The program-
ming languages/tags are also gathered to assess the diver-
sity of projects from the version control system and Q&A
forum.

4.8. User Interface

Visual Resume presents a candidate’s information through

“cards” —small cards that are 300 x 500 pixels. These cards
evoke the notion of business cards, and allow quick side-
by-side comparison of developers (DG 8, DG 9)— an im-
portant recruitment strategy [28, 30]. Figure 1(a) shows
a candidate’s GitHub (GH) card, displaying his activity
summary. The left top of the card shows his profile in-
formation GitHub ID, picture, tenure in the site, personal
website(s) or blogs, and number of followers (DG 4). A
user can click and navigate to each item in the profile.
In the rest of the card, contributions are summarized and
visually presented (DG 5, DG 6) as project managers fa-
vor information that takes less effort to verify [4]. While
details of contributions are the final criteria that shape
evaluation outcomes [5], they are harder to access. For ex-
ample, to assess coding ability, an employer may want to
look at the source code and its style, but doing so may re-
quire scrolling through numerous pages of commit history
in a (highly active) project to locate to the specific contri-
bution. Such a detailed assessment of all of a developer’s
contributions or for all candidates is infeasible.

To overcome this problem, Visual Resume allows easy
access to contribution details. At the right top of the card,
a radial chart provides a breakdown of the repositories in
which the person is most involved, based on the number
of their commits, comments, and issues in the repository.
Hovering over a slice of the chart presents the repository

name, the main programming language of the repository,
and the number of watchers. A user can click on a slice
and drill down to examine the contributions of the devel-
oper unique to that specific repository (DG 7). Clicking
on a slice in the radial chart opens a new card, which is
similar to the GH card (and therefore not shown in Fig-
ure 1, but shows information pertaining to the selected
repository. If contributions by language is selected, the
radial chart changes to show the breakdown of the pro-
gramming languages of the candidate’s contributions. In
this case, the slices in the chart aggregate activities (com-
mits, comments, and issues) across all projects that use
the same programming language. In the lower half of the
GitHub card, the bar charts summarize a user’s contribu-
tions: commits, issues, and comments across projects on a
monthly basis (DG 6). The chart in the middle of the card
presents the entire history of the candidate, from which a
user can select a specific date range.

Our prior study [13] signaled that assessing the quality
of contributions was important in the decision-making pro-
cess. Visual Resume is extended to include more explicit
quality metrics that allow easy assessment of commits and
issues (DG 3). At the bottom of the GH card, clicking
the commit’s quality opens a new card, which provides
two quality metrics (see Figure 1(b)). The first metric for
measuring commit quality checks whether commits passed
a test case or not, which is presented in the top bar chart.
The bottom chart also provides a summary of commit cen-
trality, allowing viewers to identify if commits deal with
core files. The card (see Figure 2(b)) on quality opens
by clicking “issue quality” under the Issues tab (see Fig-
ure 2(a)) at the bottom of the GH card. The first chart
displays the summary of opened or closed issues, which
indicates how enthusiastic the person is about participat-
ing in the development of the project. The second chart
shows the information on whether pull requests are merged
or not, which can signal the quality of the work based on
the acceptance by the community.

Contributions are displayed either as a stacked bar
chart or a grouped bar chart (DG 6). In the former,
all types of contributions are stacked into a single bar,
whereas in the latter, each contribution type is represented
by its own bar. These charts can help portray contribu-
tion patterns or trajectories. For example, if a developer
has become more active in a project, the stacked bar chart
easily shows this increase, regardless of the type of contri-
bution. However, if one wants to track the activity levels
of a specific type of contribution (e.g., commits), then the
grouped bar chart is a better option. Hovering over a seg-
ment in the chart displays the number of contributions
for the month in a pop-up. Clicking a bar (segment) in
the bar chart opens a new (drill-down) card that displays
detailed information on the type of contribution. For ex-
ample, if the segment of the 05/13 bar in the (stacked) bar
chart that shows the commits that passed the test case is
clicked (see Figure 1(b)), a new card opens listing com-
mits and an excerpt of the commit comment (see Figure



1(c)). We opted to display the commit message instead
of the commit-id since it can provide some information
about the commit. The commits include an annotation
about whether it passed the test case. A user can click the
View Commit link to further investigate a contribution.
Doing so takes the user to the GitHub page, where they
can view the commit and the lines of changed code.

Figure 3(a) shows a Stack Overflow (SO) card, which
is very similar to the GitHub card. The top left of the SO
card shows the tenure and reputation score in Stack Over-
flow. The radial chart gives a breakdown of the various
tags (programming languages, concepts, etc.) with which
the person is most involved based on their number of ques-
tions, comments, and answers. Bar charts show the indi-
viduals contributions (in terms of questions, answers, and
comments) on a monthly basis. Clicking “answer quality”
under Answers tab at the bottom of the SO card opens a
new card (see Figure 3(b)), which shows whether answers
were accepted by the question submitter. This metric in-
dicates the quality of answers.

Clicking on a specific activity bar opens a new card,
Figure 3(c)) that lists the contributions (in this case a list
of answers). The answers include annotations about the
number of up-votes, whether it was accepted (thumbs up
sign), and the number of comments associated with that
answer. Users can drill down to view the full answer, its
associated question, and comments by clicking on the View
Answer link, which takes them to the Stack Over page.

Each person’s activity is shown in a card, which can
be closed or rearranged by simply selecting and moving
a card across the screen (DG 8). The cards allow easy
pairwise comparison. Viewers can compare contributions
between multiple users or for the same user in different
contexts (DG 9). For example, users can compare the
GitHub contributions between two developers or the con-
tributions across different sites (Figure 1 and 2), projects,
or programming languages.

4.4. Implementation

Since Visual Resume is designed as a web application,
it does not need to be installed on the client site. It follows
a 4-step approach: collect, process, filter, and visualize
(see Figure 4). The former two steps are performed on
the server side, and require a wrapper for each repository;
the latter two are part of a rich web client that uses a
model-view-controller architecture.

Collect: Visual Resume can collect data across differ-
ent repositories. Each data source requires a specific ex-
tractor that collects and stores the data in our database.
Currently, we have implemented extractors for two dif-
ferent types of peer production sites: GitHub and Stack
Overflow [35]. Extractors for other sites can be easily de-
signed. We need site-specific extractors, since data from
each site are accessible in different ways. For example,
the extractor for GitHub uses the GitHub API. While the
GitHub API only allows 5000 requests per hour when using
basic authentication, requiring us to periodically extract

the data and incrementally update the database, Stack
Overflow provides periodic data dumps of the entire his-
tory. The extractor needs to identify the new data from
the dump to update the database.

Process: This step has three functionalities. First, it
transforms data collected in different formats into a uni-
form format (we use Neod4j a graph database [36]). Second,
it creates a data model designed to generalize across differ-
ent types of project hosting and Q&A sites. New sources
of information (discussions in mailing lists vs. comments
on an issue) can be easily added to the schema. The data
is linked such that aggregations and queries can be per-
formed per user, per repository, per language, per tag,
etc. Other pertinent information (personal page, blogs)
available from profiles in GitHub or Stack Overflow are
also linked. This model is then encoded as a JSON file.

Visualize: The visualization is created by using the
d3.js framework [37]. Currently, our card template uses a
top-down layout. It uses label, radial chart, and bar chart
widgets to display aggregated data. Different templates
that use other layout or widgets can be easily implemented
and incorporated.

Filter: Different filters can be used to adjust the amount
of information presented to the user. A basic filter that we
have currently implemented is time period selection. We
can easily create other filters that adjust other kinds of
information (e.g., the amounts or types of contributions).

5. User Study

We conducted a scenario-based, task analysis study
with ten participants to: 1) understand what information
participants seek out when they have to choose from a set
of potential job candidates, and 2) investigate how partic-
ipants collect information to make a hiring decision in a
peer production sites such as GitHub and Stack Overflow
vs. the information provided by Visual Resume. Note,
that we were not seeking (or expecting) that all partic-
ipants would converge on the same candidate, since this
is a subjective decision; instead, we observed how partici-
pants arrived at their decisions.

5.1. Study Participants

We recruited ten participants for our study. These par-
ticipants were selected to represent individuals who had
experience in the hiring process. We also recruited partic-
ipants to obtain both corporate and small software com-
pany participants. This was done because the software en-
gineering practices used in established corporations vary
from those used in lean startup operations, where agile
methods are more prevalent. Further, we included par-
ticipants who hire for their teams as well as those who
interview their peer developers. Differences in typical de-
velopment practices may in turn favor different cues for
evaluating job candidates. Table 2 summarizes our study
participants’ backgrounds.
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5.2. Study Design

Participants were told that they were the technical lead
of a project and had to assess a set of candidates in re-
sponse to a job advertisement. We created the job de-
scription to represent a typical posting for web develop-
ment positions. To do so, we reviewed postings on pop-
ular job posting sites, such as LinkedIn, Careers 2.0 [38],
and CareerBuilder [39]. We included aspects that typically
appeared across many postings, including: position de-
scription, job responsibilities, required qualifications, and
benefits.

The user study was within-subjects and comprised of
selecting top two candidates from a given set of five can-
didates for each treatment. The evaluation tasks were de-
signed based on our formative study [13] and current in-
dustry practices [2]. We interviewed two industry contacts
who were team leads with extensive experience in hiring.
We asked them about current practices when making hir-
ing decisions and how they evaluated online contributions.

The tasks were divided into two sets (Task 1 and Task
2): In Task 1, participants were asked to use GitHub and
Stack Overflow, or any other online resources they wished
to evaluate a set of five candidates. In Task 2, partici-
pants were given Visual Resume, and were free to again
use any other online resources (e.g., blogs, personal web-
site, Google search etc.) that they wished to evaluate
another set of five candidates. The goal of Task 1 and
Task 2 was to evaluate and compare the GitHub and Stack
Overflow websites with Visual Resume when making hir-

6 developers.

Table 2: Background of Study Participants

ing decisions to select top two candidates. Task 1 always
preceded Task 2 (i.e., we did not counterbalance tasks) as
we did not want to bias participants’ information-seeking
behavior based on the cues provided by Visual Resume.
We asked participants to think aloud during the study,
verbalizing their actions and the intention behind them
[25, 40]. We screen-recorded the participant actions and
collected their feedback through an exit interview. To ana-
lyze the data from our study, we transcribed participants’
verbalizations and actions from observations, notes, and
think-aloud data. We used the code set related to techni-
cal and soft skills (Table 1) for analyzing the transcripts.
Additional cues related to quality of work and social com-
petency were identified, which we added to our (cue) code
set. Two researchers collaborated on the coding until 80%
agreement was reached on about 20% of the data.

5.3. Job Candidate Selection

We selected ten potential job candidates for the study.
These candidates were selected to represent typical GitHub
and Stack Overflow users with some expertise in the topic
areas indicated in the job description (Ruby and Java
Script). To identify these candidates, we first extracted
a dataset of GitHub participants with at least one com-
mit to the Ruby on Rails project on GitHub. Next, we
queried Stack Overflow for these users to identify a sub-
set of users with profiles and activity on the site. From
this sample of 2300 common users in both communities,
we then identified candidates who had monthly activity on
both sites (240 users). From this set, we randomly selected
the ten candidates for the study, and divided them into
two groups. We counterbalanced the groups of candidates
used in Task 1 and Task 2. That is, half the participants
used the first group of candidates for Task 1 and the rest
used that same group of candidates for Task 2.



5.4. Limitations of Study Design

Visual Resume currently only collects activities from
two sources: GitHub and Stack Overflow, and our re-
sults might not generalize to cues found in other sources.
Moreover, these sites may lack contributions from under-
represented populations in software, because of which ag-
gregating contributions from them can perpetuate a self-
reinforcing behavior of exclusion. Future work should ex-
tend Visual Resume to include other types of contribution
sites also. Our participants were limited to a small subset
of employers who volunteered and therefore might be bi-
ased towards assessing online contributions. There might
be learning effects since we did not counter balance the
treatments, but this was necessary since we did not want
to bias the type of information (and sources) that partic-
ipants in the Control condition would look for based on
data provided by Visual Resume. Finally, we evaluated
Visual Resume by using only ten subject candidates. Our
results regarding strategies and cues used might not hold
true for a larger candidate pool.

6. Results

This Section presents the cues that participants used to
evaluate candidates’ technical and soft skills (Section 6.1),
followed by a discussion of the key information features
that were used for the evaluations (Section 6.2) and how
the information was accessed (Section 6.3).

6.1. What Cues were Utilized for Selecting Candidates?

Participants used a variety of cues when selecting the
top two candidates from the set of given five in Taskl and
Task2. Table 3 summarizes the information sources, the
cues, and the associated (tool) features that participants
used in the Control and Experimental conditions.

In both the Control and Experimental conditions, par-
ticipants started by getting an overview of the candidates’
profile and then details on personal interests. Ten par-
ticipants started with profile pages of GitHub and Stack
Overflow in both conditions, making it the most investi-
gated feature. Participants also often visited candidate’s
personal websites (seven participants in Control, and six
participants in Experimental) to get an overview of candi-
dates’ external contribution and personal interests.

After which participants (nine participants in both con-
ditions) focused on cues related to the amount and type of
candidates’ contributions to get a thorough understanding
of candidates’ technical skills. This evaluation pattern is
not surprising as participants’ primary goal was to “hire”
a suitable software developer, which likely prompted them
to focus on candidate’s technical skills; P12 reflected, “I
also didn’t use the Stack Overflow at all in the first task,
because I believe reputation in Stack Overflow does not de-
pend on how well someone codes.”

Only after evaluating technical skills they focused on
soft, skills, so as to hire a candidate with a comprehensive
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skill set. P14 commented: “I checked Stack Overflow to be
able to choose among them (candidate short list) better.”

6.1.1. Cues for Technical Skills

Technical skills were evaluated primarily through the

perspective of Coding Competency and Quality of Work
(Table 1)
Coding Competency: In both Control and Experimen-
tal conditions, participants reviewed candidates’ commit
histories and the number of projects candidates contributed
to by either using the “GitHub repository list” or the “Vi-
sual Resume repository cards”. They largely relied on the
visualizations provided by the tools. In the Control con-
dition participants reviewed the GitHub “activity graph”
and “recent activity”, which includes commits, opening
or closing issues and pull requests. Only one participant
evaluated the details of technical contributions by either
drilling down to the commit page or the issue list.

In the Experimental condition participants reviewed
the “Summary of all Contributions”, which also includes
contributions about issues, comments and commits (see
Figure 1a). Some participants further drilled down into the
technical contributions: commit page (three participants)
and issue list (five participants).

Quality of Work: Participants leveraged different types
of cues to decipher the quality of candidates’ contributions
as follows:

(a) Commit Details: The “content of the contribution”

is a key quality evaluation criteria in Table 1. How-
ever, few participants in the Control condition sought
to assess the quality of the contribution (only one par-
ticipant viewed the committed source code). Instead
they relied on the amounts of contribution. This could
be because there is no direct metric defined in GitHub
to evaluate the quality of the committed code. Addi-
tionally, evaluating source code would be difficult for
users who were not familiar with the project or its
programming language. For example, P17 explained:
“Since I am not a Ruby or JavaScript expert...maybe if
I knew about the language itself I would try and check
the commits more deeply. I just based [my decision]
on the core commits and seeing the steady flow of the
contributions in the last couple of years mainly.”
Six participants in the Experimental conditions used
the metrics provided by Visual Resume to assess the
quality of the GitHub contribution (features of cen-
trality and test passes, see Figure 1 (b)). For example,
P11 stated: “[candidate] is a core contributor to sev-
eral large frameworks.” P20 mentioned, “/I chose this
candidate] based on the number of commits, especially
the commits that are close to the core.” Similarly, P19
also commented, “/I chose this candidate because of]
total commit but fewest fails.”.

(b) Community Up-votes: Up-votes'and Stars? are fea-

Thttps://stackoverflow.com /help/privileges/vote-up
2https://help.GitHub.com/articles/about-stars/



Data Source Cues

Features in Ctrl. Group

Features in Exp. Group

GitHub Contribution Overview

GitHub profile pages (10)
GitHub recent activity (9)
GitHub activity graph (4)

GitHub profile card (10)

GitHub Programming Language Expertise

Not able to display

Language radial chart (7)

Commit Overview

Commit history list (5)

Commit history list (6)

Commit Detail

Commit page (1)

Commit page (3)

Repository Overview

Repository list (5)

Repository list (7)

Repository Detail

Repository information (7)

Repository card (8)

Issue Overview

Issue list (1)

Issue list (5)

Stack Overflow Contribution Overview

Stack Overflow Profile (9)

Stack Overflow Profile (8)

Answer Overview

Answer list (3)

Answer list (3)

Stack Overflow
Answer Detail

Answer page (4)

Answer page (1)

Question Overview

Question list (3)

Question list (2)

Question Detail

Question page (1)

Question page (1)

Personal Website linked to Stack Overflow

Personal website (7)

Personal website (6)

Table 3: Cues and feature used by numbers of participants in selecting candidates across both Control and Experimental conditions (task 1
and task 2)

()

(d)

tures in Stack Overflow and GitHub that represent
the appreciation and support from community users.
Three participants (Experimental condition) verbal-
ized using the number of up-votes and stars as indi-
cators of the quality of the answers or code artifacts.
For instance, P13 commented, “number of votes in an-
swers in Stack Overflow is a good indicator of some-
one’s understanding about an issue.” Similarly, P12
commented on leveraging the number of stars to deci-
pher quality, “/T choose her since] one of the projects
that she created has 4000 stars and it’s very well used
in rails community.” Further, P15 also picked a can-
didate as her final choice due to community up-votes,
“he has answered some questions, which are pretty
high ranked...and his response get[s] good feedback.”

Association with Popular Projects: Participants
assessed whether a candidate owned or contributed to
popular projects. Two participants in the Control con-
dition and three participants in the Experimental con-
dition considered owning a project as important. Sim-
ilarly, two and one participants in Control and Exper-
imental conditions, respectively considered contribut-
ing to popular projects as a factor to evaluate whether
a candidate is a suitable choice for a job position.
For example, P20 commented “[Jeremy/ seems to have
contributed to the early Rails and MYSQL2-GEM...and
has some original projects on Rails.” In addition, P12
chose Aaron and Yahuda as his top two candidates
and said, “because both founded famous projects. They
were self-motivated to see those projects come to life.”
Number of Followers: Participants considered
number of followers as a factor to determine the qual-
ity of work on GitHub— three participants in the
Control condition and four participants in the Exper-
imental condition. In both conditions, participants
perceived a higher number of followers to relate to a
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higher quality of work. For instance, one of the main
reasons P20 chose Jose (a candidate) was “he has over
3.1K followers.”

Reputation Points: Participants considered the rep-
utation of the candidate as a factor for quality of work
(six participants in both conditions). For example,
P11 chose Jeremy as one of his top two candidates in
the Control condition mainly because “he is on Ruby
on Rails’ contributor page. He is number 2.” However,
reputation points in Stack Overflow were not consid-
ered by our participants while making hiring decisions,
as P12 commented, “reputation in stack overflow does
not depend on how well someone codes. Sometimes
poor coders just want to help out.”

6.1.2. Cues for Soft Skills

Soft skills were evaluated primarily from the perspec-

tive of Collaboration Proficiency, Project Management
skills, and Motivation (similar to cues in Table 1).
Collaboration Proficiency:

(a) Interaction traces: Participants assessed commu-

nication skills based on candidates’ communication
traces: the amounts of Stack Overflow contribution
as well as whether the contribution was accepted or
up-voted by the user community. Some participants
also reviewed the “answer page” in the Control condi-
tion (four participants), and “answer list” in the Ex-
periment condition (one participant) to get detailed
overview of the contributions. Only a few participants,
across both conditions, drilled down to review the de-
tails of the contributions such as, the content of “ques-
tions” (one participant in both conditions) and “an-
swers” (four and one participants in the Control and
Experimental conditions, respectively). Three partic-
ipants, during the feedback session, emphasized that



they reviewed how the candidates phrase their ques-
tions/answers and their engagement with the commu-
nity. For example, P15 commented, “by looking at
some of his responses in Stack Overflow, he is able to
communicate, and his responses get good feedback.” In
addition, P20 commented, “/his] Stack Overflow pres-
ence is very active. [He has] good communication skill
and willingness to help others.”
(b) Endorsements: Participants used endorsements to
evaluate candidates. Six in Control and four in Ex-
perimental condition considered endorsements such as,
number of followers, the GitHub contributor list, and
reputation points to assess social competency. For ex-
ample, P17 said “I choose Aaron based on the number
of followers, he seems to be a more important part of
the ruby community. Which might indicate he is being
a better collaborator.” She added that the number of
followers reveals candidate’s interest in the software:
“he [Aaron] seems to have quite a lot of followers,
which seems to demonstrate he’s been really known in
the community and is the most enthusiastic.”

Management skills: Four participants mentioned that
past project experience was the most significant evidence
(which is inline with [13]). P11 commented, “he [Yahuda]
is a core contributor to several large frameworks and he is
a key member of a startup.” P13 chose the same candi-
date for the same reason, commenting: “he is running his
own project Wycats.” However, the remaining six partici-
pants mentioned that the cues contained in archives such
as GitHub and Stack Overflow were not enough to judge
management skills. For example, P12 commented: “the
fact that they led their projects to fame makes me think that
Yehuda and Aaron are the best project managers but it’s
scanty evidence. I would want to talk to them.” Similarly,
P14 also mentioned, “it [project management]...cannot be
judged based on numbers and data alone.”

Motivation: A variety of cues were used to infer passion
for learning. Most participants considered a high volume
of activity in GitHub and Stack Overflow as cues for inter-
est and motivation. One participant in the Control con-
dition and three participants in the Experimental condi-
tion evaluated contributions on Stack Overflow to evaluate
passion for learning. For instance, P11 commented: “he
[Yahuda] has more answers and comments on Stack Over-
flow showing that he is motivated to help others learn about
the topic [Ruby]l.” P15 considered asking questions on
Stack Overflow as an indicator of passion for learning, “he
[Ryan] asked interesting questions, that shows he wants
to learn.” Participants used the number of up-votes to
determine candidates’ enthusiasm to help the community.
Participants also used candidates’ personal website as a
source for evaluating passion. For example, P17 believed
that personal websites can indicate developers’ motivation
toward their project saying, “he’s been having the most
contribution and is being consistent. His website shows a
lot of passion for the issues related to software.”
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6.2. What Information Features were Used?

In addition to the cues discussed above, participants
also used cues from the following information features:
Candidate details: Participants started their explo-
ration with an overview of the candidate; nine partici-
pants viewed the profile pages in Control condition and
eight participants used the profile cards in the Experimen-
tal condition. From there participants (seven in Control
and six in Experimental conditions) accessed candidates’
information from external webpages (e.g., personal web-
sites and blogs) to get a better understanding about the
candidate. For example, P11 commented: “I like to see
what he writes in [his] page, what parts [of contribution]
is he proud of.” Participants reported that with Visual
Resume it was convenient to access candidate’s personal
websites. For example, P18 said: “VR tool provides links
to candidates website, which is nice and I like it... just un-
der the profile picture...which makes the external website
more visible.”

Amount of contribution: Participants in both Control
(six) and Experimental (seven) conditions considered the
amounts of contribution as important when selecting can-
didates. P17 mentioned the following factors helped de-
termine her top two choices: “I) volume of work, 2) con-
tributing to a lot of different projects including rails,..., 3)
being very active in GitHub, 4) having a lot of recent ac-
tivity, 5) participating a lot in the community, answering
lots of questions about rails, 6) having lots of repositories
linked to rails.” Similarly, P11 used the popularity (num-
ber of stars) of a project that the candidate had started
as a criterion for selection: “...ome of the projects that she
[Akira] created has 4000 stars and it’s very well used in
rails community.” On the other hand, participants con-
sidered a low number of contributions as a criterion for
elimination; P20 selected candidates based on their lack of
activity or presence, as he stated “he [Jeremy/ has mini-
mal Stack Overflow presence.” Similarly, P11 selected two
candidates because “they have less contributions and fewer
commits compared to the top two [candidates].”

Recent activity: We define recent activity as the amount
of candidates’ recent contributions in GitHub. It was one
of the most used information feature. Five and six partici-
pants in the Control and Experimental conditions, respec-
tively, used the commit history activity as their primary
cue. P16 mentioned, “Xavier has a lot of rails contribu-
tion recently.” In contrast, a lack of activity was used to
dismiss candidates, as P11 commented, “/Candidate’s] ac-
tivity has died out in the past 2 years. He is not as active
as other candidates.” Most participants resorted to using
recent activities (in addition to the amounts of contribu-
tion) as a key selection criteria: P19 commented, “commits
are enough for finding top [candidates].”

Commit Aspects: Commit aspects included the change
content of the commit (diffs and modified files) as well
as the commit message describing the change (figure 1c).
This cue was used more in the Experimental condition



(eight participants evaluated commit aspects), but only
one participant did this in the Control condition. This
was likely because Visual Resume made it easier to access
the commit aspects. P12 commented, “I made a decision
based on candidates’ commits, and whether they have re-
lated contribution to Rails and also the projects and plugins
[which] the candidates created for Rails and how much of
those were followed [by other GitHub users].”

Commits vs. Issues: While evaluating candidates, par-
ticipants used the data on commits more often than on
issues. In the Control condition, five participants viewed
commits, but only one viewed the issue list; whereas in the
Experimental condition eight participants viewed commits
and five viewed the issue list. The reason for this could be
that commits provide more details about the history (both
success and failure) of the candidate, while the list of issues
opened by the candidate only provides information about
failures identified by contributors. For instance, P19 com-
mented, “commits show everything, tell a lot from com-
mits, how someone is active.” And later he commented,
“..don’t need to look at issues, if they do not find a lot of
failures, there are not lots of issues.”

Type of projects: Participants used the repository list
in order to identify the type of projects to which a candi-
dates contributed (five participants in Control and seven
in Experimental). They used the GitHub repository list
and radial charts in the Control and Experimental con-
ditions, respectively. For example, in the Control condi-
tion P12 selected Akira as his second top candidate as
she had high reputation score and was working on a popu-
lar project while, rejecting Jose (candidate) commented “I
didn’t see any rails on the first glance.” Similarly, in the
Experimental condition, P12 selected Aaron (candidate)
and commented, “Because he is the author of Rack, which
is another hugely influential project. It’s much more ruby
oriented.”, while P17 rejected Vijay (candidate) and com-
mented, “He doesn’t have lot of core commits [in a large
project], he has a lot of small projects.”

In summary, participants evaluated cues from a variety
of information features to make their candidate selection.
Although the overall time completion is similar for the
Control and Experimental conditions, participants tended
to use more information features when using Visual Re-
sume.

6.3. How Information was Accessed?

Information Density: “Information density is the
compactness of an interface in terms of the amount of in-
formation” [41]; Interfaces with higher information den-
sity require less “moving around” to access information
and there is a higher likelihood that users will see the in-
formation they are foraging for more quickly [42]. Visual
Resume aggregates information from multiple sources and
has a higher information density than the individual pages
in GitHub or Stack Overflow. As a result, participants
when using Visual Resume took about half the actions
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Figure 5: Average participant actions (number of clicks) for various
features in Control and Experimental conditions
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Figure 6: Comparing candidates’ contribution experience by pro-
gramming language or repository through the radial chart feature of
Visual Resume.

(clicks) than when accessing the same types of informa-
tion in the Control condition. Figure 5 shows the average
participant actions for various features in the Control and
Experimental conditions.

Additionally, participants in the Experimental condi-
tion accessed more information than those in the Control
condition. All ten participants “drilled down” into the
cards to get a deeper view of a commit, issue, answer or
question. For instance, P20 reviewed candidates’ (ruby)
programming language experiences across multiple repos-
itories by using the “repository” percentage diagram (the
green radial chart in the profile card in Figure 6). He
viewed all five candidates’ profile cards and then hovered
over the repository percentages to identify (1) the num-
ber of repositories to which the candidate contributed and
(2) the major programming language for each repository.
In the Control condition, participants rarely investigated
deeper into contributions. Only one participant manually
drilled down to investigate commit details.

Side-by-side comparison: When evaluating candi-
dates, participants kept track of the different candidates
either mentally (Control condition) or by using the cards
feature in Visual Resume. In the Control condition, five
participants had to keep a mental record of all the differ-
ences between multiple candidate profiles while compar-
ing them by switching between the candidates profiles (in



GitHub site). In the Experimental condition, all ten par-
ticipants kept open multiple candidate profiles (Visual Re-
sume profile cards) and “closed” a card when they rejected
a candidate. Keeping multiple profile cards allowed for
easy comparisons across candidates. Participants found
Visual Resume useful for making such comparisons, as P12
said, “The first thing I need to determine is what the can-
didate contributed to and whether they were Rails oriented.
Visual Resume is nice for comparison purposes.”

7. Discussions

Participants when using Visual Resume accessed more
information sources related to candidates’ technical and
social skills, and did so in a shorter period of time. Our
results indicate that Visual Resume’s success arose from
its ability to: (1) present both technical and soft skills
through the same portal, (2) provide aggregated views of
candidate’s contributions, (3) allow drilling down to details
about each type contribution, and (4) allow easy compari-
son of candidates via movable cards that could be arranged
to match participants’ needs. The main distinction of Vi-
sual Resume was that it allowed participants to efficiently
scrutinize information through the cards, whereas in the
Control condition participants had to “work harder” by
scrolling through a long list of projects, switching between
portals and multiple tabs (or windows), to evaluate who
owns which projects, what programming languages candi-
dates’ worked in, the quality of the contributions, and so
forth—a time-consuming and inefficient process.

‘What about contribution quality? A key feedback
from the work in [13] was the need for a mechanism to bet-
ter understand candidates’ contributions. Therefore, the
current version of Visual Resume provided explicit quality
attributes for candidates’ GitHub contributions such as,
commits that passed test cases and their closeness to the
core (Figure 1), summary of closed issues and the status of
pull requests (Figure 2), as well as Stack Overflow contri-
butions details such as summary of accepted answers (Fig-
ure 3). All ten participants in the Experimental conditions
drilled down into the cards to get a deeper understanding
of the contributions. Very few participants in the Control
condition did so. Instead participants mainly relied on the
amounts and recency of contributions.

Six out of ten participants in the Experimental con-
dition explicitly mentioned that the quality details of the
commits (passing test cases and centrality of code com-
mits) helped them select their top candidates. A few par-
ticipants, both in Control and Experimental conditions,
used (what we term as) community indicators—up-votes
(three participants in each condition), number of followers
(two and three participants in Control and Experimental,
respectively), association with popular project (three and
four in Control and Experimental, respectively), and rep-
utation points (six in each condition)—as proxies to eval-
uate the quality of candidates’ contributions. This shows
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that participants in addition to making their own assess-
ments, also depended on the community’s evaluation of
the candidate based on their social standing.

Finally, when evaluating candidates participants also
factored in “availability” along with quality. For example,
some participants avoided selecting candidates who they
felt would be overqualified. For example, P12 commented
“He is a creator of a language and his email address is a
company name. He probably owns that company. I doubt
that Jeremy is available. So I don’t want to spend energy.”

What about interviews? Although participants felt
reviewing the activity traces in GitHub and Stack Overflow
was important to determine candidates’ expertise, they
mentioned that evaluating contribution traces in these
communities cannot replace interviews. For example, P12
after selecting the top two candidates commented, “I pre-
fer to talk to them [candidates] next.”

Participants were comfortable evaluating coding com-
petency and motivation from the online traces, but wanted
to talk with the candidates to evaluate collaboration and
management skills. For example P18 commented, “I can-
not judge [collaboration skills] from here.” and P17 men-
tioned, “I don’t know how can GitHub or Stack Overflow
data help on [assessing] management skills.” This is inline
with prior work that found interviews help assess quali-
ties such as integrity, personality, emotional intelligence,
capacity as a team player, empathy, and cross-cultural
awareness [43-48]. These qualities can rarely be captured
via data from online communities.

The role of Visual Resume, therefore, is not to be a sub-
stitute for interviews. Instead it aims to help interviewers
easily digest information currently fragmented across dif-
ferent sites and types of data to make an initial assessment
of candidates. As P19 commented: “This tool is great for
filtering out unwanted candidates and find top candidates
who can continue to the interview step: a screen through
for interview.” Therefore, its important that interviewers
recognize this fact and not soleley depend on aggregator
tools such as Visual Resume.

What about behavioral adaptation? Visual Re-
sume aggregates and presents contribution data from two
different types of online technical communities. As with
any dashboard it highlights a handful of metrics (contri-
butions and proxies of their quality) from these communi-
ties. But highlighting metrics can lead to behavioral adap-
tations [49]. First, individuals can self-monitor their be-
havior or compare their contributions with others’, which
might foster competition and in worst cases feelings of in-
adequacies. The latter may especially be a problem for
newcomers or those with lower self-efficacy.

Second, the metrics being showcased may prompt users
to change their contributions to better suit what the sys-
tem can reliably track. For example, Visual Resume does
not currently track code reviews, which may prompt peo-
ple to not participate in this really important activity.
Similarly, editing questions in Stack Overflow is another
important activity that is not currently tracked. Of course,



in future versions of Visual Resume, we can add these as
metrics, but there still will remain other difficult to track,
but nevertheless important activities such as mentoring or
managing a project.

Finally, individuals may optimize for the tracked pa-
rameter rather than the underlying concept, leading to a
kind of ‘cheating’. For example, since the number of com-
mits is a tracked metric, contributors may make small,
but numerous commits. This kind of gamification might
already be a challenge with sites like GitHub [50, 51] that
display contribution charts or Stack Overflow that tracks
reputation points [52].

Challenges with behavioral adaptations are problems
that afflict dashboards and other mining related ap-
proaches. Overcoming these challenges requires individu-
als (developers, managers and hirers) to recognize the dark
side of metrics—that metrics present only certain facets of
an individual, can be gamified, and does not alone define
a person (or their contributions).

What about excluding underrepresented popu-
lations? Visual Resume aggregates and presents the con-
tribution traces (metrics, tags, and statistics summary)
captured in peer production sites, which are often used
by developers [10] and hirers [2]. However, the informa-
tion in such peer production sites has intrinsic societal
biases such as, low gender and non-English speaking di-
versity. Research has found that women: (1) newcomers
(who have gendered profiles) have low acceptance of pull
requests in OSS projects [53], (2) are more active when
they have peer-parity [54], and (3) abstain from using gam-
ification and gamified elements (such as badges or reputa-
tion points) [55, 56]. Similarly, past work has found that
non-English speaking developers are often inactive on plat-
forms like Stack Overflow while being active on their native
language platforms equivalent of Stack Overflow [57].

Therefore, peer production sites, as well as aggregator
tools like Visual Resume, need to pay particular attention
in finding ways to minimise reinforcing the harmful ef-
fects of under representation of these populations. Visual
Resume seeks to reduce unconscious biases by focusing
on transparency in decision making as well as aggregating
multiple types of contributions and highlighting contribu-
tion quality in addition to quantity. Future work on Visual
Resume can do more to highlight community building ac-
tivities such as, (1) code review efforts and review quality
by extracting pull request comments, (2) maintenance ac-
tivities in GitHub such as issue closing/editing, (3) main-
tenance activities in Stack Overflow such as cleaning ques-
tions or answers, and (4) community building activities
such as OSS advocacy or event creation. Visual Resume
can be easily extended to tap into other peer-production
sites (e.g., GitLab or Stack Overflow sites in other lan-
guages) by adding a new “Data Extractor” component
(Figure 4). If the concept of Visual Resume gets widely
adopted, we can envision individuals creating their own
Visual Resume profiles that import their own traceable
contribution histories (e.g., private code repositories). An-
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other interesting future work is to investigate the impact of
the demographics data embedded in the contributor pro-
files (picture, name, followers) on hiring decision making.
Recent works have investigated the biases in how humans
review code as a function of its apparent author [58] or
social signals embedded in profiles [10]. A similar multi-
factor user study on hiring decisions that controls the dif-
ferent profile elements can identify the impact of each of
these factors and their interaction effects, which can then
inform the design of future aggregator tools.

7.1. Implications

Tools like Visual Resume can be used by managers and
software developers to hire prospective candidates in their
teams and company. Further, it can be used by individ-
ual programmers for self-improvement by observing their
progress and comparing with peers. Additionally, team
members can track the online collaboration and communi-
cation traces as Visual Resume can be extended to monitor
and then visualize these traces within the software teams.
It can be also used by project Gatekeepers—individuals
who are familiar with the team knowledge repository—
and guide the information seekers to desired experts.

8. Related Work

We identified six popular and freely available aggre-
gator tools and sites. CVEXPLORER [9], OPEN SOURCE
RESUME [8] and STATOCAT [11] create developers’ pro-
files based on their activities in GitHub. Further, STATO-
CAT provides statistics of the programming languages used
on GitHub. MASTERBRANCH [12] and CODERWALL [59]
collect activities across several code hosting sites (e.g.
GitHub and BitBucket). CODERWALL awards achieve-
ment badges to developers, such as when the developer
has a number of original repositories in a programming
language. OPENHUB generates developer profiles based on
activities collected by their own code search engine (Open-
Hub Code search), and also awards achievement badges
based on amount of activities. Here, we compare these ag-
gregator sites with our tool based on the design guidelines
listed in Section 3 (see Table 4).

DGT1 - Provide cues for technical and soft skills:
The majority of aggregator tools provide overviews of con-
tributions that are typically inferred as technical skills.
CVEXPLORER, MASTERBRANCH, OSR, STATOCAT, and
OPENHUB [60] provide information about the numbers of
commits, projects contributed to, and programming lan-
guages, but they do not display interaction histories for
inferring soft skills (e.g. comments, answers, or questions).
CODERWALL, on the other hand, lists programming lan-
guages and project names in which the developer is inter-
ested in, but it provides no information on code artifacts.

DG2 - Provide cues for quality: Most tools provide
links to project pages from the code hosting site but do
not provide direct cues of quality. The users can manually



Developer/ DG1 DG2

Project ¢ DG3 DG4 DG5 DG6 DG7 DG8
Project
Centered Tech Soft
Skills  Skills Code Q&A
#Commits, Language  CitHub Profile,
#GitHub #Issues, C‘mfm‘if' Stack
Visual . . followers, GitHub, Stack #Comments, ’ ’ Overflow Profile,
Developer Yes Yes Direct Direct . Issue, . Yes
Resume reputation  Overflow HQEA, P Repository,
points Languages, Q&A ’ Commit,
Repositories Post
#Commits, . .
OpenHub Developer/ Ves No Indirect  None OpenHub OpenHub Code ARSI Commit Repository, Ves
Project Badges Search Language  Commit
Languages
GitHub, Stack
-\ R . . KARMA Overflow, CoderWall- .
CoderWall Developer Yes Yes Indirect Indirect Point BitBucket, badges None Repository No
Codeplex
CVExplorer Developer/ Yes Yes None None None GitHub Predefined None None No
Project Skillset
#GitHub Languages, Commit
OSR Developer Yes Yes Indirect  None GitHub Repositories, § Repository No
followers ‘ Language
GitHub Event
Languages,
) : #GitHub - Repositories GitHub
Statocat Developer Yes Yes Indirect  None e GitHub Seromred Language 10t No
#Forked
Google Code,
Mastor Rankings, SourceForage,
Developer Yes No None None Developer GitHub, Apache, Languages None None No

Branch o
Score

Codeplex, BerliOS,
Java.net

Table 4: Table of Aggregator Sites

investigate activities in the project to identify the source
code they committed. STATOCAT and OSR simply link to
the GitHub developer profile, where a user can investigate
project contributions on their own.

DG3 - Present social standing in the commu-
nity: CODERWALL and OPENHUB award achievement
badges to developers who meet (site-specific) criteria based
on the number of their contributions. STATOCAT and
OSR display the number of followers to suggest their so-
cial standing. None of the tools provide social standing in
the Q&A communities.

DG4 - Aggregate cues across projects and sites:
CVEXPLORER, OSR and STATOCAT focus only on con-
tributions in GitHub, whereas MASTERBRANCH, CODER-
WaLL, and OPENHUB create developer profiles that are
generated by aggregating activities across multiple code
sharing sites (See DG4 in Table 4). None of these tools
aggregate provide information about contribution on both
code hosting sites and Q&A forums.

DGS5 - Summarize activity: CVEXPLORER lists the
developer’s skills based on the type of repositories that
they contributed to. MASTERBRANCH presents the to-
tal lines-of-code of contributions categorized per program-
ming language. Similarly, OPENHUB, OSR and STATO-
CAT provide statistics about the number of commits to
a repository and also its programming language. Particu-
larly, OSR lists the the most recent user activity according
to GitHub event log. Thus, these aggregators (as well as
GitHub) are on par in summarizing code contributions.

DG6 - Visualize summaries: OPENHUB displays
commit summaries as bar charts grouped by projects, and
stacked line charts grouped by languages. OSR and STA-
TOCAT use pie charts to visualize developer contributions
based on programming language. CVEXPLORER applies
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a wordcloud-like visualization to display the skillset of de-
veloper. However, CODERWALL and MASTERBRANCH do
not provide any visualizations.

DGT7 - Allow drill down: CODERWALL, STATOCAT
and OSR link to either developer profiles or repository
pages on the code hosting sites, where users can further
find out information details manually. Similar to Visual
Resume OPENHUB provide detailed statistics about the
commits and repositories within its site. However, CVEX-
PLORER and MASTERBRANCH do not provide the drilling
down feature.

DGS8 - Allow pairwise comparison: Majority of
current profile aggregators do not provide any compari-
son functionality. OPENHUB is the only tool that provides
functionality to allow comparisons between projects, pro-
gramming languages and repositories, but it is not geared
for comparison of developers.

9. Conclusions

This paper presents Visual Resume, a contribution ag-
gregator tool, designed based on the emerging needs of
hiring practices. Visual Resume is built using a set of
nine design guidelines spanning about what information
to present and how to present it.

A scenario-based user study evaluators assessing job
candidates revealed three key findings.

Cues Utilized for Assessing Candidates: Partici-
pants in both treatments focused on the amounts and type
of contributions to first understand candidates’ technical
skills and then focus on soft skills. Cues to assess techni-
cal skills included candidates’ coding competency and their
contribution quality (e.g., commit details, the number of
up-votes and stars, the number of popular projects associ-
ated or owned, the number of followers, reputation points).



The metrics for soft skills were communication skills (e.g.,
amounts of contributions, community acceptance of con-
tribution), social competency (e.g., endorsements), man-
agement skills (e.g., past project experience, the number of
owned projects), and motivation (e.g., volume of activity,
the number of up-votes and personal website).

Information Features Used: The information fea-
tures used with and without Visual Resume were amounts
of contributions, contribution history, commit aspects, and
type of projects. When using Visual Resume participants
had an easy access to candidate’s profiles and related
external webpages. Further, with Visual Resume they
tended to use more information features and drill down
into specifics of a contribution.

Information Accessed: Participants when using Vi-
sual Resume took half the number of actions to access
information and utilized its built-in features to conduct
side-by-side comparisons of candidates.

Our results suggest that an aggregator built using
these design guidelines is effective beyond conventional
approaches and requires less cognitive effort. Further, Vi-
sual Resume can help developers, recruiters, and managers
evaluate developers’ skills and contributions through mul-
tiple cues before embarking on interviews.
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We enclose our submission “Visual Resume: Exploring Developers' Online Contributions for
Hiring”. This paper is an enhanced and expanded version of a conference paper that originally
appeared at the ICGSE 2016 conference [1]. The paper is uploaded as a supplementary
document. The expansions include a new version of the tool, its evaluation, and new evidence
of the cues that recruiters/employers use for evaluating job candidates.
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Section 3: Guidelines for creating Visual Resume. Added the guidelines for creating Visual
Resume. (about 80% new)

Section 4: Visual Resume. Added the Design of Visual Resume and Contributor Profile.
Expanded and updated User Interface to accommodate the latest version of Visual Resume.
Compared with Visual Resume that was presented in ICGSE 2016, the current Visual Resume
has different Ul in how it presents the data from GitHub and Stack Overflow, and adds
additional features, like quality metrics, annotations on Commits whether they pass the test
cases and annotations on answers whether they are accepted and so on. We have also revised
existing figures and added a new figure. (about 75% new)

Section 5: User Study. Revised the user study to accommodate the new scenario-based, task
analysis study for the latest version of Visual Resume. (about 70% new)

Sections 6-8. Entirely new quantitative and qualitative results from the new scenario-based,
task analysis study for the latest version of Visual Resume. Also, entirely new Discussions and
Implication for the findings from the new study. (Sections 6-8: 100% new).

Section 9: Related Work. Expanded and updated Related Work. Added a table. (about
60%).

Section 10: Conclusion. Revised the conclusion to accommodate the new findings from the new
study for the latest version of Visual Resume. (100%)
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