
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

What happened to my application? Helping end users comprehend evolution
through variation management

Sandeep Kaur Kuttal⁎,a, Anita Sarmab, Gregg Rothermelc, Zhendong Wangd

aUniversity of Tulsa, USA
bOregon State University, USA
cUniversity of Nebraska-Lincoln, USA
dUniversity of California, Irvine

A R T I C L E I N F O

Keywords:
End-user programming
End-user software engineering
App inventor
Variation management

A B S T R A C T

Context: Millions of end users are creating software applications. These end users typically do not have clear
requirements in mind; instead, they debug their programs into existence and reuse their own or other persons’
code. These behaviors often result in the creation of numerous variants of programs. Current end-user pro-
gramming environments do not provide support for managing such variants.

Objective: We wish to understand the variant creation behavior of end user programmers. Based on this
understanding we wish to develop an automated system to help end user programmers efficiently manage
variants.

Method: We conducted an on-line survey to understand when and how end-user programmers create program
variants and how they manage them. Our 124 survey respondents were recruited via email from among non-
computer science majors who had taken at least one course in the computer science department at our uni-
versity; the respondents were involved in the Engineering, Sciences, Arts, and Management fields. Based on the
results of this survey we identified a set of design requirements for providing variation management support for
end users. We implemented variation management support in App Inventor – a drag and drop programming
environment for creating mobile applications. Our support, AppInventorHelper, is meant to help end-user
programmers visualize the provenance of and relationships among variants. We conducted a think-aloud study
with 10 participants to evaluate the usability of AppInventorHelper. The participants were selected on a first-
come, first-served basis from those who responded to our recruitment email sent to list-servers. They were all
end users majoring in electrical engineering, mechanical engineering, or physics. None had formal training in
software engineering methods, but all had some experience with visual programming languages.

Results: Our (user study) results indicate that AppInventorHelper can help end users navigate through variants
and find variants that could be utilized cost-effectively as examples or actual code upon which to build new
applications. For example, in one of our empirical studies end users explored variants of a paint application in
order to find a variant that could easily be extended to incorporate a new feature.

Conclusions: Our survey results show that end users do indeed reuse program variants and suggest that un-
derstanding the differences between variants is important. Further, end users prefer running code and looking at
outputs, accessing source code and meta information such as filenames, referring to the creation and update
dates of programs, and having information on the authors of code. When selecting variants users prefer to look at
their major features such as correctness, similarity and authorship information. End users rely primarily on
memory to track changes. They seldom make use of online or configuration management tools. Hence, in-
tegrated domain-specific variation management tools like AppInventorHelper can significantly help improve
users’ interactions with the system. A key contribution of our work is a set of design requirements for end-user
programming environments that facilitate the management and understanding of the provenance of program
variants.

https://doi.org/10.1016/j.infsof.2018.06.008
Received 20 September 2017; Received in revised form 15 June 2018; Accepted 19 June 2018

⁎ Corresponding author.
E-mail address: sandeep-kuttal@utulsa.edu (S.K. Kuttal).

Information and Software Technology 103 (2018) 55–74

Available online 20 June 2018
0950-5849/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2018.06.008
https://doi.org/10.1016/j.infsof.2018.06.008
mailto:sandeep-kuttal@utulsa.edu
https://doi.org/10.1016/j.infsof.2018.06.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2018.06.008&domain=pdf

1. Introduction

End-user programmers are individuals who create software without
any formal training in software engineering methodologies.
Millions [60] of them write simulations using LabVIEW [43], design
websites using HTML, program web-applications using Yahoo Pipes
[72], and design mobile applications using App Inventor [1], to name
just a few popular platforms.

It is well known that end-user programmers learn by looking at and
using examples [10,47]. In fact, end users are known to opportunisti-
cally employ reuse while programming. A case study of more than four
thousand mobile apps across five different categories in the Android
Market revealed that on an average 61% of the classes appeared in two
or more apps through inheritance, libraries, or frameworks [59]. To
support such reuse, most end-user programming environments provide
online repositories in which program variants are publicly archived.
Evidence suggests that end users do make use of these repositories:
previous studies [66] have found that more than 56% of the instances of
code in repositories of end-user programs are clones. Another me-
chanism for reuse is to use programs as sub-programs in other appli-
cations. For example, in a study of Yahoo Pipes (a web mashup en-
vironment)1 it was found that 27.4% of the programs in the Yahoo
Pipes repository had been used as sub-programs [39]. Thus, even
though end users may view their programs as “throw away,” their code
often ends up being long-lived and in many cases is reused by other
end-user programmers [32].

End-user programmers’ requirements tend to be implicit, and
emerge and change over time [32]. Often, requirements are poorly
defined and there is no single way in which to satisfy them [68].
Moreover, while creating programs, end users’ design decisions and
coding activities are typically interleaved [32]. Further, end users
program opportunistically; i.e., they tend to select from alternative
solutions that are available based on their own assessments of the
strengths and weaknesses of those solutions [10]. Finally, end users
tend to “debug their programs into existence” [58]; i.e., they investigate
alternative strategies and backtrack through changes to arrive at solu-
tions [40,58].

Changing requirements, code reuse (“clone and own” and “acci-
dental” sharing of code), and programming styles (opportunistic pro-
gramming and debugging programs into existence) tend to create large
numbers of program variants. While the provision of programs in re-
positories helps support end-user programming to an extent, finding
appropriate variants remains a challenging task.

End-user programming environments typically do not provide fa-
cilities for managing variation. While developing applications, end-user
programmers may have difficulties determining which variant of a
program to begin with, which variant is the most recent, and which
variants may have been created by other programmers in order to im-
prove or extend their code. Professional software engineers use varia-
tion management systems to support code reuse, change traceability,
and maintenance [21,34]. Therefore, bringing the benefits of variation
management into end-user programming environments is likely to
empower end users with their programming tasks as well.

When considering variation management from the point of view of
end-user programmers, we find it useful to distinguish two different
ways in which variation occurs. In the first case, an end-user who has
some “ownership” of a program may modify it or enhance it over time,
creating new versions that replace prior ones, and essentially viewing
the program as having a single, persistent identity. This is akin to de-
velopers working along a single line of successive releases of a product,
or improving one of the products that makes up a product line. In the

second case, an end-user may begin with an existing program, and es-
sentially “clone” that program, also with the goal of enhancing or
modifying it, but viewing it as the beginning of a new, independent line
of programs. This is akin to developers creating a new permanent
branch off an existing product, or adding a new product to a product
line. In this work, we refer to all of the programs created in either of
these fashions as “variants”, because they have shared provenance with
some particular program, and we refer to programs created in the first
manner as “versions”. In our earlier work [40], we showed that ap-
proaches for managing versions can be useful for end-user programmers.
In this work we widen our focus to variants.

We hypothesize that by providing support for managing variants in
addition to versions, we can enable end-user programmers to explore
and understand structural and behavioral differences between different
instantiations of programs. This, in turn, should help them create pro-
grams using variants of their choice as they can select alternative var-
iants, try various combinations of variants, and appropriately mix fea-
tures from different variants.

In this article,2 we first summarize the results of a survey that we
conducted with the aim of understanding why and how end users
create, find, and manage variants. Based on the survey results, we de-
fine a set of design requirements for programming environments that
support the management of variants in end-user domains. We then
describe AppInventorHelper, a prototype supporting variation over
space in the App Inventor programming environment. With the help of
visualizations provided by AppInventorHelper, end users can: (1) vi-
sualize all program variants at once, (2) view relationships between
variants, and (3) select appropriate variants based on various para-
meters, such as code similarity, author, date of creation, and date of
update. Finally, we report results of a formative user study that shows
that AppInventorHelper can help users select appropriate variants and
understand the differences and similarities among variants. We also
explore which environment features facilitate or hinder selection of
variants by end users.

Our work makes the following contributions:

1. We present the first study focusing on understanding the behavior of
end-user programmers with respect to how they create, find, and
manage variants of similar programs.

2. We present data showing that a large percentage (88%) of end-user
programmers report that they do create many program variants,
while an almost equally large percentage (82%) of them do not use
tools to track changes or manage variants; instead they rely pri-
marily on memory to manage variants.

3. We present design requirements for end-user programming en-
vironments to facilitate the management, and understanding of the
provenance of, program variants.

4. We implement our approach within the App Inventor environment.
The visualization of program provenance provided by our im-
plementation, however, generalizes to other programming en-
vironments because it does not rely on specific languages or tools.

5. We present an evaluation of our environment that shows that it can
help end-user programmers find and manage variants.

6. We discuss implications for the design of future tools supporting
variation management for end-user programming environments.

The remainder of this article is structured as follows. Section 3 de-
scribes our online survey and its results, and the design requirements it
leads to. Section 4 describes our AppInventorHelper programming en-
vironment. Section 5 describes our empirical study design, and
Section 6 describes the results obtained in the study. Section 7 describes
the implications of our results for the design of environments

1 Yahoo Pipes was launched in 2007 and discontinued in 2015. It was popular enough,
however, to have spawned recent attempts to revive it. See, for example, http://www.
pipes.digital.

2 Much of the material in this article appeared originally in the first author’s Ph.D.
dissertation [36].

S.K. Kuttal et al. Information and Software Technology 103 (2018) 55–74

56

http://www.pipes.digital
http://www.pipes.digital

supportive of variation management. Section 8 discusses related work,
and Section 9 concludes.

2. Overall research methodology

Fig. 1summarizes the overall research methodology that we fol-
lowed. Our first goal was to understand how end users manage their
variants; this goal is informed by the three research questions in the box
at upper right. We conducted pilot interviews with end users (Labview
users) to understand what processes they use to manage their variants
and whether they have any difficulties. Based on these interviews we
constructed an online survey (following guidelines created by Kitch-
enham and Pleger [3], which received 83 responses from end-user
programmers. We analyzed the survey results to inductively generate a
set of nine design requirements (DR#1– DR#9) for tools supporting
managing variants, by following guidelines listed in [17,23]. We then
iteratively designed our AppInventorHelper environment by using the
design requirements and cognitive walkthroughs on our prototypes.
Finally, we performed a usability study of AppInventorHelper, informed
by the research questions in the box second down from upper right. This
study consisted of a with-in subjects evaluation of 10 end-user pro-
grammers where they had to modify an app by finding and reusing code
from an existing variant (example). We analyzed our usability study
results using inductive and abductive reasoning to derive eight addi-
tional design requirements (DR#10–DR#17).

3. Online survey

To the best of our knowledge, our work is the first to support end-
user programmers’ behavior in the presence of variants. Therefore, as a
first step we needed to answer the following questions:

• RQ1: How and why do end users create and share variants?

• RQ2: How do end users find variants?

• RQ3: How do end users manage variants?

To answer these questions, we began by conducting interviews with
two experienced LabVIEW programmers to understand how and why
they created and shared variants. These interviews were semi-struc-
tured and focused on understanding how the programmers interacted
with variants and learning what features and factors motivate the
creation of variants. Some of the questions we asked were:

• how do you create a program?

• how do you share a program?

• do you reuse your programs?

• how do you find the programs you want to reuse?

The interviewees showed the first author their workspaces, and how
they created, shared, organized, and managed alternatives (variants).
They also discussed the challenges in retrieving and reusing these al-
ternatives. We used the information gathered in our interviews, as well
as the results from a prior survey of professional programmers [73], to
create a structured online survey. We conducted a trial administration
of the survey with four end-user programmers at the University of
Nebraska-Lincoln. Given their feedback, we refined the survey ques-
tions iteratively to improve their relevance and clarity.

Our survey consisted of 14 background questions related to the
demographics of the respondents, and nine survey questions. All survey
questions were multiple choice, and asked the respondents to estimate
the frequencies of various activities they conducted on a 5-point scale
where 1 = All the time, 2 = Frequently, 3 = Sometimes, 4 = Rarely,
and 5 = Never. The online survey3 was designed using Qualtrics.4 (As
the text of the survey shows, we avoided using technical terms, and
instead of referring to “variants” and “versions” we used common end-
user terminology such as “copies of programs” and “modified code”.
These terms were selected from verbalizations from the two pilot in-
terviews.)

3.1. Recruitment

We recruited survey respondents by sending email to non-computer
science majors who had taken at least one course in the computer sci-
ence department at our university. To participate in the survey, stu-
dents were required to have some programming experience (in any
language) and to be at least 19 years old (a requirement of our uni-
versity’s institutional review board.) Interested students answered the
background and survey questions using the link provided in the email.
Respondents were eligible to receive a raffle prize of $25.

3.2. Survey participants’ demographics

Of the 124 respondents, 83 matched our criteria. Table 1 presents
general demographic data on these 83 respondents. The respondents
were from the Engineering (Mechanical, Chemical, Electrical, Civil,
Construction), Sciences (Maths, Economics, Actuarial Sciences, Bio-
chemistry, Physics, Agronomy), Arts (Music, BSEN & French, History,

Fig. 1. Summary of overall research methodology.

3 A complete version of the survey can be found in the Appendix.
4 http://www.qualtrics.com.

S.K. Kuttal et al. Information and Software Technology 103 (2018) 55–74

57

http://www.qualtrics.com

Education Psychology, Psychology, Advertising and public relation-
ships), and Management (Business Administration, Supply Chain
Management) fields. All respondents had taken at least one program-
ming language course per the requirements of their majors, and most
(81%) claimed knowledge of one or two programming languages. All
respondents had worked on group projects as part of their required
curricula. No respondents, however, had taken any courses related to
software engineering.

The 83 qualifying respondents indicated knowledge of the following
programming languages (with numbers of respondents in parentheses):
Matlab (45), C (23), C++ (16), Python (14), Java (14), Visual Basic
(11), Alice (8), C# (3), LabVIEW (3), HTML5 (3), Ruby (2), Fortran (2),
Arduino (2), HTML (2), and others (Objective C, Scheme, Haskell, XML,
CSS, Javascript, SQL, A++, ACC, Datalog, Tibasic, R, SAS, SPSS,
Mplus, and Stata). Most respondents (89%) had created programs as
part of class projects and assignments, and all respondents had taken
courses in our computer science department that included group pro-
jects. 22% of the respondents programmed to support their research,
8% programmed as part of jobs, and 22% wrote code in relation to
hobbies.

The survey data showed that 88% (73 of 83) of the respondents tend
to keep copies of their programs. Because we are interested in under-
standing the processes by which programmers create, find, and manage
variants, we consider only these 73 respondents in the analyses that
follow.

The survey results allowed us to define several design requirements
for supporting variation management (see Table 2). We used a rigorous

approach to extract the design requirements. This process was per-
formed by the first and second authors iteratively, who used inductive
and abductive reasoning to extract the requirements. (Inductive rea-
soning is a process by which specific observations with strong evidence
of truth are used to make broader generalizations. Abductive reasoning
is a process of deriving a plausible explanation or diagnosis from an
observation.)

We used these requirements to design our variation management
support for end-user programmers. We refer to the nth DR in the table
by “DR#N” in the following discussion.

3.3. How and why do end users share variants?

We wished to understand how and why end users share variants.
Thus, we asked the respondents how frequently they share their code
with friends or work in teams. We also asked them how frequently they
use online resources or borrow code from friends when programming.
Results for these questions are shown in Fig. 2.

Personal copies: Most respondents reported creating variants for
personal use; 83% indicated that they reuse their own code at least
“sometimes” (mean: 3.41, SD: 0.88). Almost 50% of the participants
indicated, however, that they “rarely” or “never” share code with others
(mean: 2.70, SD: 0.98). This supports the notion that end users typically
create programs for themselves and that they keep variants of their
code while opportunistically coding [10].

Code sharing: At least 73% of the respondents indicated that they at
least “sometimes” work in teams and share their code with team
members (mean: 2.73, SD: 1.08). Almost 50% of the respondents in-
dicated, however, that they “rarely” share code with friends (mean:
3.53, SD: 1.04). The fact that our respondents are university students,
and typically discouraged from sharing work products, may play a role
here.

Online resources: At least 78% of the respondents indicated that they
“sometimes” use online resources such as templates, examples and tu-
torials when seeking information on program variants (mean: 2.71,
SD:1.12).

Improving code: To learn how end-user programmers create variants
of their programs, we gave participants a set of seven programming
situations in which users might keep copies of their code and asked
them how often these applied to them.

The results show that at least 82% of end users create variants at
least “sometimes” when they reuse or improve their own code. 60% of
the respondents indicated that they create variants at least “sometimes”
in other situations.

Since end users do create variants, these results indicate that similar
programs might exist in online repositories. Past work [66] has shown
this to be true. This suggests that providing a way to indicate code si-
milarity may help end-user programmers find variants. This also mo-
tivates the provision of similarity information in the design of variation
management systems (DR#1). Even though users may not create pro-
grams explicitly to share, they do reuse one anothers’ code; this sug-
gests the potential utility of tagging programs with author names while
keeping variants (DR#2). Finally, the fact that end users often use ex-
amples and templates, and numerous similar variants exist in re-
positories, motivates a design requirement that favors keeping similar
variants in close proximity to each other in views provided by variation
management systems (DR#3). This is especially important, since recent
studies have shown that finding a variant among others is challen-
ging [56,65].)

3.4. How do end users find variants?

We also wished to understand how users find specific variants.
Finding one’s own variants: Sophisticated version control systems

allow extraction of past versions based on creation dates and tags, but
these are often difficult for end users and are rarely used [29]. End users

Table 1
General demographics (N=83).

Characteristics Distribution

Gender Male: 64 (77%)
Female: 19 (23%)

Age 19–23: 66 (80%)
24–29: 16 (19%)
30–40: 1(1%)

Education Undergraduate: 73 (88%)
Graduate: 10 (12%)

Industrial None: 70 (84%)
Experience 1–6 months: 6 (8%)

6 months – 1year: 3 (4%)
1–3 years: 3 (4%)
> 3 years: 3 (4%)

Programming < 1 year: 65 (78%)
Experience 2 years: 11 (13.5%)

3 years: 0 (0%)
> 3yrs: 7 (8.5%)

Programming 1–2: 67 (81%)
Languages 3–5: 14 (17%)
Known 5–10: 2 (2%)

Engineering: 49 (59%)
Disciplines Sciences: 26 (30%)

Arts: 8 (8.5%)
Management: 2 (2.5%)

Table 2
Design requirements.

No. Design requirements emerging from survey

DR#1 Allow users to understand similarities between variants.
DR#2 Allow easy access to author information.
DR#3 Keep close-proximity variants together.
DR#4 Include program output as a way of representing variants.
DR#5 Provide direct access to documentation and source code.
DR#6 Include metadata such as filenames, popularity, creation and update date

information for variants.
DR#7 Include correctness and efficiency information for variants.
DR#8 Include information about features supported by variants.
DR#9 Allow easy access to variants and their relationships.

S.K. Kuttal et al. Information and Software Technology 103 (2018) 55–74

58

program in a way that is broadly characterized as implicit, unplanned
and opportunistic [32]. We wished to elicit the attributes of variants
that end users actually desire given their programming styles.

Fig. 3 shows the survey responses for different methods respondents
used to find their own variants. At least 85% of the respondents
“sometimes” resort to executing programs to find a particular variant.
Hence, program output is an important attribute to consider in pro-
viding access to variants (DR#4). The next most common approach
involved relying on memory; at least 82% of the respondents reported
at least “sometimes” doing this. This motivates the need for a variation
management system that provides easy access to information about
variants and their relationships (DR#9). A third approach involves
examining documentation (at least 78% of the respondents “some-
times” did this), and a fourth approach involves observing program
source code, (at least 77% “sometimes” did this). These motivate the
provision of simple, direct code and document access from within a
variation management tool (DR#5). Filenames, creation dates, and

update dates were reported to be used at least “sometimes” by between
62% and 78% of the respondents; hence these should also be supported
(DR#6).

Finding variants in online repositories: We asked similar questions to
learn how end users find other users’ variants in online repositories;
Fig. 4 summarizes the responses. The responses are similar to those in
Fig. 3, but with more emphasis on examining documentation and less
on checking source code. Additionally, at least 67% of the respondents
indicated that they check the popularity of source code (mean: 3.04,
SD: 1.79) “sometimes”, and at least 60% of the respondents indicated
that they “sometimes” consider creation and update dates; hence, these
should be provided in a variation management system (DR#6).

Naming conventions: We also asked the respondents what naming
conventions they use to keep track of variants. Indicating working or
non-working copies (mean: 2.74, SD: 1.37) and including date of
creation (mean: 2.90, SD:1.44) were popular conventions; at least 60%
of participants use these at least “sometimes” (Fig. 5). Other naming

Fig. 2. Factors related to sharing of variants.

Fig. 3. Finding one’s own variants.

Fig. 4. Finding variants in online code repositories.

S.K. Kuttal et al. Information and Software Technology 103 (2018) 55–74

59

conventions such as appending numbers, author names or update dates,
or retaining system-generated numbers, were less commonly used.

Selecting variants: Fig. 6 provides data on variant selection. Over
98% of the respondents noted that they at least “sometimes” consider
code correctness when selecting variants (mean: 1.82, SD: 0.84); this
motivates the inclusion of information on correctness (DR#7). Re-
spondents (92%) indicated that reusability is a factor they consider at
least “sometimes” (mean: 2.22, SD: 1.04). Providing information about
similarities between variants may help end users identify variants to
reuse (DR#1). Further, 92% of the respondents also indicated that they
at least “sometimes” evaluate features (mean: 2.27, SD: 1.06), which
motivates DR#8. Finally, 82% of the respondents indicated that they
consider the understandability (mean: 2.36, SD: 1.17) and efficiency of
a variant (mean: 2.40, SD: 1.13) to be useful. Providing direct links to
source code and documentation (DR#5) should help with under-
standability, and DR#7 should enable users to assess efficiency.

3.5. How do end users manage variants?

We also wished to understand how end users manage their variation
space.

Existing practices: Fig. 7 shows responses of the respondents re-
garding the solutions they use to keep track of variants. Most

respondents relied on memory (at least 90% indicated at least “some-
times”). The use of configuration management tools is reported by 78%
as “rare” or “never”. This suggests that domain-specific version man-
agement systems might help end users; a result noted in prior work
relative to scientists [29]. However, since end users emphasize the
speed and ease of programming over program robustness and main-
tainability [10], variation management support must be automated and
seamless, so that they need not follow explicit steps to manage variants.

Sources of frustration: We also asked the respondents whether they
keep track of changes and whether they find this frustrating. Fig. 8
shows that 82% of the respondents (mean 2.63, SD: 0.94) at least
“sometimes” do keep track of changes and that the process is indeed
frustrating for them (mean: 2.66, SD: 1).

These findings suggest that a proposed variation management
system for end users should make it easy for users to access information
on variants and the relationships among them (DR#9).

3.6. Limitations

Our survey drew on a population of college students, so we cannot
claim that our results will generalize beyond them. Still, our partici-
pants do represent a relevant population, and they had created pro-
grams in a wide-variety of programming languages, including many

Fig. 5. Factors encouraging naming conventions of variants.

Fig. 6. Factors explaining selection of variants.

Fig. 7. Solutions for keeping track of changes.

S.K. Kuttal et al. Information and Software Technology 103 (2018) 55–74

60

that are popular with end users.
Phrasings of survey question can inherently embed researcher bias.

To mitigate this, the first author carefully designed the survey by re-
ferring to a survey design framework [57] and using terms that end
users typically use, which were identified from the pilot interviews.
Nonetheless, our survey questions may not fully represent our theore-
tical concepts and could have been ambiguous to some participants.

Finally, we proposed design requirements by drawing inferences
from the survey results and user study feedback; therefore, these may
be subjective. However, to mitigate these problems, the first and second
author iterated over the design requirements to determine how well
they matched the results until they reached consensus.

3.7. Summary

The key results of our survey are that end users do create variants,
and they do so frequently, but they do not use tools to track changes or
manage their variants. Respondents relied primarily on memory to
manage variants. Correctness, author names and similarities among
features are attributes used by end users while searching for specific
variants. When attempting to find specific variants, respondents con-
sidered program output. Therefore, we hypothesize that providing au-
tomatic support for variation management can provide features that
end users can rely on, and improve their ability to access, assess, and
use variants.

4. Approach: AppInventorHelper

Our online survey helped us collect general design requirements for
use in supporting a variation management system for end-user pro-
grammers. To help us explore the potential benefits of such a system the
first and fourth authors implemented a variation support prototype in
the mobile app creation environment, App Inventor. In this section we
describe the App Inventor environment, and the support we provide.

4.1. App Inventor

The App Inventor environment [1] supports the creation of mobile
applications (“apps”) for Android platforms. App Inventor is a popular
end-user programming environment. As of 2015, the App Inventor
community included nearly three million users from around 195
countries; over 100,000 active weekly users have used App Inventor to
build over seven million android apps. The resulting apps are used
variously by formal and informal educators, government and civic
employees and volunteers, designers and product managers, hobbyists
and entrepreneurs, and researchers [54].

We selected App Inventor because it is open source software, and it
allows users with any level of programming background to create apps.
Moreover, users can share their apps with other App Inventor users on a
community site called the App Inventor Gallery. Further, as noted
earlier, App Inventor is popular with the sub-community of end user
programmers (i.e. students) we used in our survey and user study.

App Inventor provides a graphical interface that allows users to drag
and drop components to create software applications (referred to in the
App Inventor context as “projects”). Each project consists of a design
(interface) and blocks (program logic). App Inventor provides Design
and Block Editors to allow users to create these.

The App Inventor Design Editor consists of components for de-
signing the interface of an app. Fig. 9 (left) shows the interface of a
calculator app created in App Inventor. The Design Editor window
consists of four sub-windows. The Palette window makes components
related to user interfaces, layout, media, drawing and animation, sen-
sors, storage, connectivity, and Lego Mindstorms available to users.
After a user drags a component into the viewer window, they can
modify the component’s look and feel via the Properties window. The
Components window contains a list of all components present in the
Viewer window.

The App Inventor Block Editor (Fig. 9 (right)) helps users create
program logic for apps. It consists of built-in and custom blocks that are

Fig. 8. Sources of frustration.

Fig. 9. App Inventor Design Editor and Block Editor showing a Calculator app.

S.K. Kuttal et al. Information and Software Technology 103 (2018) 55–74

61

used to design components. Users combine blocks to create program
logic. Users can also use parameters to tailor blocks for specific apps.

Users creating apps can change their design or blocks without
compiling or running the code. Once an app has been created it can be
tested on an Android phone or an emulator. After testing an app, a user
can deploy it by packaging it into a file (.apk) or by generating a bar-
code. The barcode can be scanned or typed in on a phone.

App Inventor users can reuse their own apps by using “save as” or
“checkpoint” commands. When using “save as” a user begins with a
new project, whereas when using checkpoint the user continues to work
on the original project.

4.2. AppInventorHelper

We now discuss the design of AppInventorHelper (AIH), and present
a user scenario that illustrates our design elements. We then provide
implementation details about AIH.

4.2.1. Design decisions
End-user programming environments largely do not represent prior

versions or alternative exploration paths as branching histories; and end
users who tend to program opportunistically are forced to rely on their
memory to reason about alternatives. While the web interfaces pro-
vided in project management systems (e.g., GitHub) are leading to the
use of version control systems outside of code management, they still
require users to learn specific commands, concepts, and processes.
Cloud based applications (Dropbox, Google Drive) are easier to use,
however, they do not allow variation management operations of the
sort that are needed. Our survey results and pilot interviews revealed
that end users typically rely on ad hoc processes and their memory to
keep track of the variants landscape.

Therefore, our overall goal was to design a variation management
system that renders the process of working with variants seamless and
intuitive by making information about variants and their relationships
easily accessible (DR#9).

Our survey results helped identify the attributes that end-user pro-
grammers assess when selecting variants, from which we created an
initial set of requirements (Table 2) for providing variation manage-
ment support for end users. We then sought feedback from four Lab-
View programmers (senior Ph.D students in Engineering) about the
requirements and the visualization support. We used LabView pro-
grammers as participants, because LabView also uses a block-based
interface and these programmers created and managed variants as part
of their day (research) jobs.

We performed four evaluation iterations, in which the first author,
assisted by another member of our research staff, conducted cognitive
walkthroughs and interviews, with the same set of four end users.

In the first iteration we evaluated paper prototypes of four different
visualizations representing the evolution of programs. These visuali-
zations included a network view, a list view, and two tree views. The
final tree view (the one on which the final prototype was designed) was
based on the ancestry tree view design, but included aspects from the
network view.

In the second iteration we identified the information (e.g, filenames,
snapshot of output) that would be useful to present. Our third iteration
helped us select the features needed for app profiles (meta-data about
apps). Our final iteration suggested some esthetic improvements to the
prototype. Our application is just one implementation in one particular
domain, targeting our population, but similar visualizations could be
provided for different domains.

Unit of variation. We wished to select features of variants that are
abstract enough to differentiate variants from each another. These
features can be based on structure or behavior. App Inventor is a visual
programming language in which apps are created by connecting com-
ponents and defining their properties. This gave us three options to
consider as units of variation; namely, components/blocks, properties/

parameters, or connection information. Parameter values and connec-
tion information do not capture complete information about an app.
Parameters capture only configuration information and connections
capture data flow information about a program. Components, in con-
trast, contain functional information related to program behavior that is
static and does not change. Moreover, in our previous formative stu-
dies, a similar abstraction level (modules) helped participants reuse
temporal variants [37,38,40]. Finally, components and blocks are si-
milar to functions in textual languages, and thus, using these as basic
units may allow the work to be extended more easily to other lan-
guages. For these reasons, we chose components as units of variation.
Note that while we keep track of all code changes, we decided to pre-
sent our visualization based on component changes; then, for each
component, the user can drill down and find details about the changes.

Visualization support. Another important choice involves the level
of abstraction to use to support visualization of information on variants.
We decided to support a coarse-grained view for visualizing variation
over space, to help users view all the variants of a program in a re-
pository. We organize the information on variants hierarchically and as
a graph view, because hierarchical approaches for organizing in-
formation based on context are found useful by users [30]. We also
decided to keep all information in close proximity with other variants
based on context (DR#3). This may help support “orienteering” ap-
proaches for finding information based on context and origin, that are
also found useful by users [67]. Figs. 10 and 11 provide examples of the
visualization support we provide; these examples are discussed further
in the following scenario.

4.2.2. Relating variants to user experience: a scenario
To further illustrate AIH, and to illustrate the type of user experi-

ence we intend AIH to support, we consider a scenario in which an end-
user programmer interacts with our prototype in order to create, find,
and manage variants. In presenting the scenario, we refer to relevant
design requirements (Table 2) and relate these to visualization features
provided by AIH.

Our scenario involves Shelley, a junior science student at a uni-
versity, who has a classmate, Ted, who is visually impaired. Ted’s Math
and Physics classes require the use of a calculator to solve problems.
Shelley has some programming background and she has used App
Inventor to create Android apps. She decides to create a calculator app
that Ted can use on his Android phone.

Creating and managing variants. Shelley’s friend Erin has already
created an app (named “EasyCalculator”) using App Inventor that takes
text input and performs basic calculator operations (add, subtract,
multiply and divide). Shelley looks at Erin’s app, and with AIH she is
able to see that her app has already been extended by other people.
Fig. 11A shows various app variants extended from Erin’s Easy-
Calculator app; nodes represent apps (variants) and edges represent
copy relationships between apps (variants). All copied (app) variants
are displayed to the right of the parent app from which they have been
derived. Node colors represent authors (DR#2). As can be seen in
Fig. 11A, the Graphview shows that another author, Terry, has already
created a variant of the calculator app (named “TalkingCalculator”) for
visually impaired people, and his app converts text to speech. Shelley
clicks on the node, which opens Terry’s app in App Inventor (DR#5),
allowing her to assess the “speech” block(s) (DR#8).

Shelley copies (using “save as”) Terry’s app and changes the inter-
face design to try three different look-and-feel variants; namely, those
of a typical calculator, Android, and Windows 8. Fig. 11B shows the
four app variants that are thus created (“PocketCalculator”, “Wind-
roidCalculator”,“VisualCalculator”, and “VoiceCommandCalc”) from
“TalkingCalculator”. The Graphview allows Shelley to see these designs
in relation to their parent and in close proximity (DR#3).

Shelley prefers the user interface with the Android look and feel,
and gives it to Ted who begins to use it to solve problems in his classes.
In this manner, AIH has helped Shelley opportunistically program.

S.K. Kuttal et al. Information and Software Technology 103 (2018) 55–74

62

While creating the app (variants), whenever she reaches a state in
which she finds errors, she can remove the portions of code she has
newly added, and AIH keeps track of the intervening states of her
program. As such, AIH also helps her debug her programs into ex-
istence. Both of these programming styles are encouraged because AIH
retains copies of her variants automatically, so that she need not rely on
memory (DR#9) or other tools to manage them.

Seeking variants. After several weeks, Ted’s math course becomes
more advanced and involves trigonometric calculations. Shelley offers
to extend her app to include trigonometric functions. Using AIH, she
discovers that her app has already been copied and extended by several
other authors creating more variants. AIH helps her understand the
directions in which her app has evolved (Fig. 10).

Shelley can also determine the similarity of her code to that of other

app (variants) by looking at the thickness of edges in the Graphview
(DR#1). When Shelley hovers her mouse over the projects, she can
assess the similarity of her code to that of parent and child projects. For
example, Fig. 11C provides a view of the similarity of “TrigCalculator”
to its parent and other variants. Thicker edges signal greater similarities
between project variants, and the maximum thickness of an edge can be
equal to the height of its incident nodes, indicating 100% similarity
between projects.

Additional sources of information are also available. Nodes also
contain project names, and project creation and update times, and
Shelley can see which authors have copied code by considering node
colors. Shelley can also retrieve design and block information by se-
lecting the Designer or Blocks buttons in the AIH interface.

AIH also helps Shelley find variants of the calculator app that are

Fig. 10. AppInventorHelper (AIH) interface for providing variation management support for end-user programmers. Nodes in the graph represents variants of an app
and edges represents the copy relationship between two variant. Apps created by the same author have the same boundary colors. The red bars next to some of the
nodes indicate error status (percentage of errors in a project). The thickness of the gray edges denotes the amount of similarity of source code between two nodes.

S.K. Kuttal et al. Information and Software Technology 103 (2018) 55–74

63

not known to contain errors, by considering the red (error) bars
(DR#7). The height of the red bar beside a node represents the per-
centage of errors known to exist in the project, where error percentages
are calculated in terms of the number of errors or messages occurring in
blocks, divided by the number of blocks. Shelley can see which variants
are known to be faulty, and subsequent cloned/extended variants into
which the faults may have been propagated if the child project was
created before the parent project was updated.

Selecting specific variants using app profiles. Shelley can view
complete app profiles by letting her mouse hover over specific projects.
Fig. 11D shows an example of such a profile for the “Wind-
roidCalculator”. App profiles provide complete information on the
project, including name, description, output, percentage of similarity
with copied apps, percentage of errors, popularity, author of the app,
and when the app was created and updated (DR#4 and DR#6). Profile
information helps Shelley obtain a finer-grained view of each project,
and she can search for a desired variant by using that information.
Ultimately, she can select the most desired variant by a mouse click,
open it in a separate window, and modify it (DR#5).

4.2.3. System architecture and usage
Fig. 12 presents the system architecture for AIH. The architecture

consists of a Server with a variation plug-in, and a Client with a vi-
sualization plug-in. The Server and Client interact with a database to
save and retrieve information. The Client interacts with the Server to
run and render information about an app. The data exchanged is XML
or JSON data.

Variation plug-in. To create variation management support we
modified the source code of App Inventor. The contents of all variants

are kept locally in the database, where we retain both design (UI) and
block (program logic) data for each app. JSON (for design) and XML
(for blocks) contents are captured and kept in the database to save
information on variants, and each variant’s information includes the set
of components/blocks added to the canvas by the user. We keep track of
variants by intercepting copy events (“save as” or “checkpoint”) and
recording them in the database. Working and non-working variants are
identified by intercepting warnings and error messages captured by App
Inventor.5

Visualization plug-in. Our visualization plug-in is initialized from

Fig. 11. AIH Graphviews. (A) A snippet of the Graphview as seen by an end user. (B) The four variants—“PocketCalculator”, “WindroidCalculator”,“VisualCalculator”, and
“VoiceCommandCalc”—that were created from “TalkingCalculator” app. (C) Hovering over “TrigCalculator” shows the similarity between it, its parent
(“DecimalCalculator”), and its variants (“ArcTrigCalculator” and “FullTrigCalculator”). (D) An app profile for the “WindroidCalculator” app variant.

Fig. 12. System architecture for AppInventorHelper (AIH).

5 The visualization for AIH is available at http://www.cse.unl.edu/~ressarma/
Visualization/performancetree.php.

S.K. Kuttal et al. Information and Software Technology 103 (2018) 55–74

64

http://www.cse.unl.edu/~ressarma/Visualization/performancetree.php
http://www.cse.unl.edu/~ressarma/Visualization/performancetree.php

the client side. The client requests encoded data (JSON) from the server
in order to display the visualization in AIH. The visualization code uses
the d3.js libraries, which are written primarily in Javascript and SVG.
The server side plug-in is written primarily in PHP. The Graphview
utilizes the child and parent relationships obtained from the database.

We consider similarity based on how much an application resembles
another application based on code – including features and the user
interface. Hence similarities between parent and child nodes are cal-
culated differently for block views and designer views. We calculate the
similarities by “diffing” the programs of the two variants. The simila-
rities are calculated by “diffing” XML files for the block view, and JSON
files for the designer view.

Usage Scenario. To further illustrate the way in which end users
and the system interact we return to our usage scenario. Any time
Shelley creates, selects, or deletes an app from the AIH Graphview, this
triggers the AIH visualization plugin to interact with the variation
plugin. Given information on Shelley’s action, the variation plugin
saves, accesses, or updates the information related to the app in the
local database. Each save action also causes the plugin to save versions
of the code in form of XML data (for the design) and JSON data (for the
blocks in the local database). When Shelley selects an app profile from
AIH, the visualization plugin accesses the information about the app
directly from the local database to render it on the screen.

5. User study design

To better understand end users’ usability experiences with AIH and
discover how we can improve it, we performed a formative lab study6,
guided by the following research questions:

RQ1: how do end users find, evaluate, and reuse variants with and
without the support of AIH?

RQ2: how usable is AIH in supporting end users in managing var-
iants?

5.1. Participants

To recruit participants we sent an email to several departmental
mailing lists at our university; 21 students responded. We screened
these responses in order of arrival, excluding those respondents who
had less than three months experience with LabView, and those who
had any formal training in software engineering methods (course work
or professional software development experience). We required
LabView experience for several reasons: 1) being a visual programming
language it is similar to App Inventor, 2) it is the only visual pro-
gramming language used in the curriculum of our University, and 3) it
has the advantage of being popular with engineers and scientists for
creating sophisticated programs. Our participants were majoring in
electrical engineering, mechanical engineering, and physics, and their
ages ranged from 19 to 40. None of the participants had formal training
in software engineering methods, but all had some experience (ranging
from three months to four years) with visual programming languages.
None of the participants had prior experience with App Inventor.
Finally, since gender differences have been shown to influence end-
users’ interactions with software, [5,11,12] we also ensured that we had
selected an equal number of male and female participants (five each).
All participants were compensated with $20.

5.2. Study setup

We used a think aloud protocol [46,62], asking participants to vo-
calize their thoughts and feelings as they performed their tasks. This
helped us gain insights into the participants’ thought processes, and

barriers they faced while exploring, understanding and selecting var-
iations. This approach required us to administer the study to partici-
pants on an individual basis with an observer – in this case, the first
author.

We performed the study in the Usability Lab of the Computer
Science Department at the University of Nebraska-Lincoln. Participants
were first asked to complete a brief background questionnaire; this was
followed by a tutorial of approximately ten minutes on App Inventor.
The tutorial also included a short video of a think-aloud study so that
users could understand the process. After participants completed the
tutorial, we asked them to create a small sample project with App
Inventor to give them hands-on training in creating a mobile app and
familiarity with App Inventor in general. The participants were en-
couraged to ask questions and ask for clarification during this phase of
the study. We also provided them with web links for App Inventor
documentation.

Next, to provide additional experience we asked participants to
complete an initial task in the App Inventor environment itself, without
the use of AIH. This base case task involved using keywords to search
the App Inventor gallery for apps for painting, and extending one such
app by adding a new feature. The base case helped us understand the
difficulties faced when participants do not have variation management
support in this particular domain. This experience also allowed parti-
cipants to provide more insightful feedback on AIH and its features,
because they could compare the two types of experiences.

We next moved on to the experiment tasks, which were designed to
help us understand how participants employed AIH to identify relevant
variants and what environment features affected their selections. In
AIH, participants used the visualization support to look for variants
(unlike the base case which involved keyword searches).

We set out initially to find existing families of variants in online
repositories for our study, because we did not wish to create entire
variation families artificially. We had discovered that most popular App
Inventor apps occurred in families containing 15–30 members; thus, we
decided to utilize base case and experiment tasks that involved 30 apps.
We ultimately chose two families of apps (one family of calculator apps
and one family of paint apps) that had 16 and 32 variants available,
respectively. We downloaded these variants, and then asked the fourth
author (an undergraduate research assistant) to create additional new
variants for each of the families until 30 of each were available. The
fourth author performed this task by observing similarities in variants’
code, and then based on those, extending existing variants to include
additional features. The resulting sets of variants were of diverse
complexity and some of them were large.

Participants used the UI (Fig. 11D), provided by AIH, to view var-
iants of the apps. In the base case, users had to search over the entire
repository (the 30 apps appeared when appropriate keywords were
used), whereas in AIH the variation subset was presented. (This is not
an artificial device: the very presence of variation management support
allows sets of related apps to be automatically identified and considered
in isolation.)

Each participant completed two tasks (see Section 5.3). Since our
primary goal was to understand the users’ system usage behavior rather
than their task correctness or the time required to complete tasks, we
provided hints to the participants if they became “stuck” while adding
features to the app. We did this because we did not want to penalize our
study participants for reasons of their unfamiliarity with App Inventor
programming. After the participants completed each task we followed
up with an interview to understand why they selected specific variants
and what environmental features helped or hindered their search and
encouraged their selection.

We audio recorded each session and logged the users’ on-screen
interactions using Morae,7 a screen capture system. The total time

6 All supplementary documents related to this study can be found in the Appendix of
[36]. 7 Morae: http://www.techsmith.com/morae.asp.

S.K. Kuttal et al. Information and Software Technology 103 (2018) 55–74

65

http://www.techsmith.com/morae.asp

required for completion of the study per participant was approximately
1.5 h, which included an average of 60 min for task completion.

After participants completed all tasks, we administered an exit
survey to obtain additional feedback. The survey consisted of both
closed and open-ended questions about AIH. We used the Microsoft
Desirability Kit to measure participants’ opinions of AIH [6].

5.3. Tasks

As just explained, our two tasks involved a paint app (base case
task) and a calculator app (experiment task). The primary goals of the
first task were to provide additional experience (after the 10 minute
tutorial), serve as a base case (without the use of AIH), and allow
participants to later compare experiences with and without AIH (and
thereby provide insightful feedback on AIH). The primary goals of the
second task (calculator) were to understand how users search and select
variants, understand users’ system behavior (not task correctness or
efficiency), and understand the strengths and weaknesses of AIH in
helping end users select and reuse existing examples. In both cases, our
participants were asked to search for similar apps and then add features
to the apps.

Paint task: In this task, participants were asked to do the following:
“Create an app to craft and decorate using mouse strokes. The app
should also allow users to select strokes of different sizes. Add a feature
to this app for erasing the canvas when the phone is shaken.”
Participants were asked to search for such apps using the App Inventor
Gallery.

Calculator task: In this task, participants were asked to do the
following: “Create a talking calculator, which speaks aloud all numbers
and the operations being performed on the numbers. In order to do this
task, you can search for calculator apps that perform basic operations,
e.g., add, subtract, divide and multiply. Extend this app to include the
log function.” To perform this task, participants had to use the func-
tionality provided by AIH.

5.4. Analysis methodology

We transcribed all verbalizations and actions performed by the
participants. We analyzed transcripts by coding instances of reuse
(finding, evaluating and debugging a usage context), navigation order

(forward, backward), exploration (backtracking, alternate choices), and
variant attributes (author, filenames, errors, similarity, output, and
date). Two researchers collaborated on the coding and an inter-rater
reliability was calculated between the two coders. Once the coders
achieved more than an 80% inter-rater reliability agreement (the final
round reached 87% agreement) on 20% of the data, each researcher
independently coded the remaining transcripts. Note that according to
Landis and Koch [44], reliability coefficients of 80–100 are considered
“Almost Perfect” for determining the rigorousness of coding. The semi-
structured interviews with participants were used to analyze behaviors
observed and elicit feedback about how users viewed App Inventor and
AIH. These interviews were transcribed and coded similarly. Fig. 13
provides an example of how the coding was done on the transcripts in
the cases of (1) analyzing a task and (2) analyzing a retrospective in-
terview.

5.5. Threats to validity

All empirical studies have threats to validity that should be con-
sidered when interpreting results. Threats to external validity arise
from the fact that we considered only two tasks based on only two types
of projects. Moreover, we considered only a small number of university
students in the survey and study. Our study was intended to be a for-
mative study, however, and therefore we used convenience sampling.
Moreover, App Inventor has a large user base of K–12 and university
students [71]; thus, our survey and study do address a significant po-
pulation of actual App Inventor users. Furthermore, prior studies have
found that students and professionals can be equivalent “when their
knowledge, skills and experiences fit within the tool’s intended user
population” [33].

Other external validity threats arise from the fact that the variants
given to the participants represent only a small sample of possible
variants. We limited the numbers of variants considered to 30 since this
number was typical of variants found in some of the most popular
projects in the AppInventor Gallery. Moreover, some of these variants
were created by ourselves. Further studies with different populations,
tasks, and projects is needed to mitigate this threat.

Threats to internal validity arise from the following factors. Our
study design helped us obtain better feedback about the usability of
AIH, but it could have led to learning effects as participants moved from

Fig. 13. Coding examples for analyzing a task and an interview transcript.

S.K. Kuttal et al. Information and Software Technology 103 (2018) 55–74

66

the base case to the experiment task. Our study is meant to be formative
(not summative), however, and to focus on the feasibility and usability
of variation management support. The base-case task was needed to
train participants in App Inventor and to observe the current conditions
in which they operate. Since AIH provides additional features (visua-
lization and provenance) an AB comparison would not be fair. We did
not want to create a situation in which participants looked for
AppInventor Helper features in the base case. Therefore, we did not
counterbalance the tasks.

Threats to construct validity include the possibilities that the com-
plexity of our projects was not high enough to allow measurements of
effects, and that the projects used for base and experiment tasks may
not be comparable in complexity. We controlled for this by performing
initial pilot studies on two non-participants and used their feedback to
adjust the tasks’ complexity.

6. Results

We wish to examine the strengths and weaknesses of AIH in helping
end users select and reuse variants in programming tasks. To do so, we
analyze the behavior of participants with and without AIH with respect
to (1) how they find variants and (2) how they evaluate variants. We
also evaluate the usability of AIH through our exit survey and inter-
views.

6.1. Reuse behavior of users with and without AIH

Reuse is a primary mechanism by which end users create new
programs [15]. Rosson et al. [58] identify three primary activities that
users perform when they attempt to reuse programs: (1) finding a usage
context, (2) evaluating a usage context, and (3) debugging a usage

context (see Fig. 14). That is, users first need to find an example that
suits their current task context, then they need to evaluate this example
to determine whether it matches their requirements within their task
context, and then they may need to edit, tweak, and debug the example
to perfectly meet their requirements.

These reuse activities occur sequentially, but if any of them are
unsuccessful (as per the user), users tend to backtrack to their previous
activity. This process of performing activities and backtracking is re-
peated until the user has completed the task. We use the steps of this
process to organize the discussion of our results.

We observed that our participants, when performing both base case
and experiment tasks, also performed the three aforementioned activ-
ities to find appropriate variants. However, since our focus is on
searching and navigating to find variants, we focus primarily on the
first two tasks.

In presenting results, we first describe how participants performed
an activity in the warm up task, as it serves as a base case task. We then
describe how they performed the same task using AIH.

6.1.1. Finding a usage context
Our results show that finding a usage context can be seen as a

composition of: (1) understanding the variation space, and (2) navi-
gating through that space.

a. Understanding the landscape of the variation space. To find an
appropriate variant a user first needs to know what variants exist that
may match their current requirements. In the base case task, partici-
pants used the search feature provided by App Inventor. Participants
had to rely on the keyword search functionality, which required them
to identify appropriate keywords – a difficult process in general [19].
Not surprisingly, half of the participants (five) had difficulties identi-
fying appropriate keywords to use. For example, when participant P2

Fig. 14. Reuse activities process flow adapted from Rosson et al. [58].

S.K. Kuttal et al. Information and Software Technology 103 (2018) 55–74

67

searched for “mouse strokes”, she received results related to a rodent.
These five participants used dictionaries or searched the internet for the
meaning of the phrases in the task description to better understand its
semantics.

A key step in finding the right usage context involves participants
“orienteering” their search; that is, following a series of small steps to
reduce the search space [67]. In the base case task, participants per-
formed iterative searches and relied on their analysis of the results to do
so. Seven participants used multiple combinations of keywords before
arriving at a final list. One participant (P5) who had difficulty in the
task asked, “How do I find applications that are similar [in the list pre-
sented]?”. After evaluating the search results for 7.5 minutes he mod-
ified the search keywords to reorienteer his search. Another participant
(P4) needed to orienteer his search keywords 14 times before he was
satisfied. Eight participants used on average 5.6 keywords while or-
ienteering their search (this does not include participants who selected
apps without using keywords). In summary, participants in the base
case task spent effort creating queries, evaluating the search context,
and orienteering their search.

In the experiment task all participants used AIH, and hence short
circuited the search process. They were able to rely on the visualization
to understand the usage context of the variation space. Seven partici-
pants mentioned that AIH helped them organize information (as per
their responses to the Microsoft desirability kit). The graph view of AIH
served two purposes. First, it allowed participants to obtain an over-
view of the variation space and how variants were related to each other
through the hierarchical views, which are known to be useful in re-
presenting relationships between information [30]. For example, P3
commented: “It explains more about the applications that have been done

and the relationships among them”.
Second, the graph view helped participants understand the land-

scape of the variation space by providing information about the pro-
venance of variants, where provenance is defined as an understanding
of the chronology of the ownership, custody or location of an object. In
exit interviews, eight of ten participants mentioned that AIH was useful
for understanding the provenance of variants. The graph view allowed
participants to track the origin and development of variants in terms of
functionality and changes in authorship. Each participant referred to
one or more of these sources of provenance information in their exit
interview. For example, P2 commented: “It helps in knowing the origin of
the app... also the authors and similarity”.

b. Navigating the variation space. To navigate the variation space
users browsed through the list of apps and reviewed app names and
features. In the base case task, participants browsed through the list of
apps returned by their search in the order in which they were pre-
sented. Half of the participants tended to remain within the first three
search results (Table 3). One reason for this could be that the App In-
ventor Gallery display page shows only the first three results (as shown
in Fig. 15) and users have to scroll to see other results. (When asked
why she didn’t look at other apps, P2 commented “Oh I didn’t see the
scroll thing”.) Four participants browsed to other apps in the list by
scrolling.

In contrast to the base case, when using AIH, participants navigated
through the variation space easily using the graph view that was pro-
vided. The hierarchical layout and similarity information on edges
fostered exploration among variants before participants settled on a
variant that matched their usage context. Participants visited on
average 9.6 apps (nodes in the graph) before selecting a specific app.

Participants used information on similarity and degree of similarity
between apps (edges and edge weights in the graph view, respectively)
to focus their navigation and to select an appropriate app. P3 com-
mented, “I followed the tree...′′. Participants also explored branches and
considered the provenance of the variants. For example, P10 com-
mented: “if neither of the other branches would work [were appropriate] I
went back to the Talking Calculator [app name] as the base one”.

Two participants used information on how many apps an author had
used to inform their navigation. For example, P10 selected an app based
on its author, commenting: “I picked it because the guy [author] who
created this app [pointing to the selected app] made another five [apps],
which is a high number. So I stayed in this area”.

The ease of navigating forward (toward more functionality) or
backward (toward less functionality) between variants, along with
provenance information, gave participants flexibility in navigating.
Often, instead of tracing the development of a variant (additional
functionalities) from the beginning, participants started from leaf nodes

Table 3
Number of Times an App was selected from the list of results returned with the
keyword search. The * shows the Final App selected by the participant to
perform the Task. P4 selected from the list of the latest Apps while P5 did not
select any App during the study.

Participant 1st app 2nd - 3rd app 4th or more apps

P1 1* 0 0
P2 1 1* 0
P3 3* 0 0
P4 0 0 0
P5 3 3 0
P6 2 1 1*
P7 0 0 1*
P8 2 1 2*
P9 1* 0 0
P10 0 0 1*

Fig. 15. Linear list of search results in App Inventor Gallery as viewed by participants.

S.K. Kuttal et al. Information and Software Technology 103 (2018) 55–74

68

because they deduced that these variants would have the most func-
tionality, and then worked their way backwards. Two participants used
forward navigation (parent to child), five participants used backward
navigation (starting at leaf nodes), and three used both.

6.1.2. Evaluating a usage context
The second step in reuse activities is to evaluate the appropriateness

of an example to the task at hand. After evaluation, if a selected app
turns out to be inappropriate then users backtrack, i.e., revert back to
finding a new variant by a new search (base case task) or exploring the
AIH visualization.

Models of attention investment [7] consider the costs, benefits, and
risks that users weigh when deciding how to complete a task. The
participants performed such implicit cost benefit analyses when making
decisions about whether to backtrack to identify a more appropriate
variant or modify a selected app to meet the task requirements.

a. Application characteristics investigated. Participants in-
vestigated the following parameters when considering activities in both
the base case and experiment tasks:

• the features of an app as inferred from its name

• the code inspected by opening the block editor

• the output when the app is executed in the emulator

• the snapshot of the output from the .gif image provided either by
the author (base case task) or by AIH

• the description of the app

• the author of the app

• the popularity of the app based on number of downloads

• the similarity between apps

• errors in an app

Table 4 provides details on how each of these parameters was

obtained by the participants. From our observations and corroborated
by our exit interviews, we identified the extent to which each parameter
was used. Fig. 16 shows the numbers of participants who used each of
the parameters. As the figure shows, when using AIH users have a wider
variety of characteristics that help them select an application.

The three parameters that all participants in both cases investigated
were name, code, and output. The name of the app was the first thing
participants considered, and it played a key role in the selection
strategy. When asked about his selection strategy, P6 (in the base case
task) commented: “I was looking at the name of the project and the
functionality of the project. So I looked for paint programs”. In a similar
vein, in the experiment task, P8 commented: “enhancedCalculator [app]
belonged to the talking calculator [app] so it should speak aloud, and the
advanced [app] one should have a function like power similar to the log
function”. Therefore, it is likely that the name of the app is the “least
costly” cue available to the user and it was used as a primary factor in
evaluating the usage context. Once a participant considered the app to
be a close enough match to what they desired, they opened the code
and checked its output.

Two other parameters, snapshot and description, were used to
evaluate an app’s functionality in a light-weight manner before in-
vestigating it in greater detail. The snapshots were visible in the base
case task as icons next to the app name in the search results. Seven
participants viewed this information. In many cases, however, such
snapshots could not be expanded or were not present in an app’s page.
In AIH, in contrast, a snapshot of the output was always available
through the app profile, which was available via a mouse hover over
the node (variant) in the graph. Four participants used this information
frequently. This feature was generally appreciated by participants; for
example, P4 commented: “I like that you can see what the application
looks like instead of a logo”.

Participants in both groups (five in the base case task and six in the
experiment task) read the description of the apps to understand how
they worked, and were frustrated when there were not enough details
available. When asked what things he would like to see improved in the
App Inventor Gallery, P6 (in the base case task) commented: “First I
would add a better description, people need to see a proper description”.

We were surprised that other parameters such as author or po-
pularity were not used often. Participants may have ignored in-
formation about authors given that they are not part of the community
and not aware of authors’ reputations. We did find that the number of
similar apps created by an author was used to some extent by partici-
pants in the experiment task (6). For example, P2 commented “Good
choices to start off”, and while explaining his selection he mentioned, “I
saw the basic calculator, I saw that if this person modified these [pointing to

Table 4
Parameter sources.

Parameters Base case task Experiment task

Name search results node name, app profile
Code block editor block editor
Output emulator emulator
Snapshot gif in search result gif in app profile
Description search result app profile
Author search result app profile
Popularity search result app profile
Similarity none graph view
Error none graph view

Fig. 16. Distribution of parameters used during experiment and base case tasks. The selection choices increased with AIH.

S.K. Kuttal et al. Information and Software Technology 103 (2018) 55–74

69

other children of the application] then they must have added something
[here]”.

Information on errors was used moderately in the experiment
task: five participants accessed the error status of an app before se-
lecting it. P9 commented: “It [graph view] increases the efficiency because
others know which part is wrong / how much error”. It is likely that the
error information allowed participants to avoid selecting erroneous
apps; P3 commented: “I don’t remember if I checked the error of the code,
but I should as I want to do as little programming as possible”.

b. Backtracking
Participants evaluated the app code and if it was relevant to their

task context, they then worked on the code; otherwise, they back-
tracked to find a new usage context.

Seven out of ten participants backtracked at least once in the base
case task. Participants found this task particularly difficult, because the
cost of finding an appropriate starting point was high. The participants
who backtracked ended up selecting imperfect or erroneous apps, be-
cause they began working on the first app that seemed relevant to the
task. Selecting imperfect or erroneous apps cost them time and effort.
For example, participant P8 selected an erroneous app, and spent 25
min trying to make it work, which in turn introduced further errors. In
contrast, AIH helped participants by providing an overview of the
“landscape” of the variation space (the degree of similarity among
variants), while also providing app profiles (available when allowing
the mouse to hover over a variant). These profiles presented the ma-
jority of the app parameters (see Table 4) that participants referred to.
Since participants spent more effort navigating and selecting a “good
candidate” initially, fewer of them (three of ten) performed back-
tracking. For example, P3 commented: “I could discard faster the ones
that were not useful [during initial selection]”. Two of the participants who
did backtrack, however (P1 and P5), did so multiple times, because they
wanted to find an app closer to the one required by the task. These
participants initially opened multiple apps and selected among them
rather than settling for the first app that they located.

6.1.3. Debugging a usage context
The final step in reuse involves users tweaking reusable components

to fit the context of their current task. While reusing code, if users in-
troduced errors or found that the selected app was not appropriate they
backtracked, i.e., resumed looking for new usage contexts or evaluating
usage contexts.

While not the focus of our experiment, we found that AIH allowed
participants to select more appropriate apps as starting points. This
helped them save time while editing the variants. We observed that
once participants selected an app and began modifying it, they pre-
ferred to debug the selected app and make it work instead of going back
to navigation. Only one participant (in the base case task) and two
participants (in the experiment task) sought to look for a new app when
they ran into errors due to their modifications.

6.2. Usability of AIH

We evaluated the perceived usability of AIH using the Microsoft
Desirability Toolkit and the exit survey.

6.2.1. Microsoft desirability toolkit
We used the Microsoft Desirability Toolkit, developed by Benedek

and Miner, to measure users’ emotional response and the desirability of
AIH [6]. Participants were given a list of 118 adjectives and were asked
to select those that most closely applied to their experience with AIH.
The participants selected 28 words (on average 2.8 apiece), of which 23
were positive and 5 were negative. The most popular positive words
(based on the number of times they were selected by participants) were:
Organized (7), Easy To Use (6), Accessible (6), Useful (5), and Time
Saving (4). The negative words were mentioned by four of the eight
participants. The most common negative word was Simplistic (4). The

other negative words were: Too Technical (1), Unpredictable (1), In-
timidating (1) and Overwhelming (1).

As already discussed, the GraphView helped organize variants and
their similarities in an easy to navigate form. The app profiles and edges
depicting similarity across variants made information about variants
easily accessible. The similarity information along with comprehensive
app profiles helped participants select appropriate variants and thereby
spend less time creating, removing, modifying or debugging variants. It
is possible that the AIH visualization is what four participants found to
be too simple.

6.2.2. Exit survey
Three of the questions in the exit survey asked participants to pro-

vide ratings on a Likert scale from 1 to 5 (1 indicating “strongly believe”
and 5 indicating “don’t believe”) on the usability of AIH. The questions
were related to whether users believed that AIH: (1) helped them un-
derstand the evolution of apps, (2) improved the reusability of the
apps, and (3) helped them choose correct apps. Table 5 summarizes the
results, showing the mean and standard deviation of the responses of
our participants. The data indicates relatively strong beliefs that AIH
helped in all three categories.

7. Discussion and implications

Here we discuss our study results in the context of end-users’ be-
havior while using AIH. We then discuss implications for the design of
environments to support variation management.

7.1. End-user behavior

7.1.1. Evaluating the variation space
Laying out variants in the graph view based on parent-child re-

lationships and aggregation of functionally similar variants provided a
hierarchical view. Hierarchical views help users create mental maps of
relationships [30]. In the absence of a hierarchical view, participants
(in the base case) with linear lists explored only small portions of the
variation space. Therefore, hierarchical views that present information
on relationships and similarities across variants can complement the
linear search results that are typical in large online repositories. In the
future, we can use existing techniques like ECCO (Extraction and
Composition for Clone-and-Own) to select desired features, find soft-
ware artifacts to reuse, and then provide hints to users completing the
task manually regarding which software artifacts may need adapta-
tion [22].

7.1.2. Using provenance data
The participants largely used provenance information when navi-

gating the variation landscape and choosing variants to reuse. The
participants used information such as creation date to identify the latest
variant, author information to identify similar variants, and the parent
of the variant when making their selection. The similarity relationship
between variables was the most popular. This suggests that in a var-
iation space, the key thing that users look for is how variants emerged
and their similarity with others in the space. Such provenance in-
formation and visualization for variations can potentially be also used
to represent information common among other projects.

Table 5
Participant feedback about AIH (1 Indicating “Strongly Believe” and
5 indicating “Don’t Believe”).

Variable Mean (SD)

Helps understand app evolution 1.9 (0.99)
Improves app reusability 1.8 (1.03)
Helps in selecting correct app 2.0 (0.81)

S.K. Kuttal et al. Information and Software Technology 103 (2018) 55–74

70

7.1.3. Assessing quality
A key step when evaluating a variant involves assessing its quality.

Five of our participants heavily used the error indicator provided by
AIH. However, in the presence of the indicator, they did not bother to
assess the code itself. They also did not consider the number of
downloads as a metric–a possible signal of the quality of an app (po-
pularity)– perhaps because it was the last piece of information provided
and lacked explicit visual markers on the graph view.

Finally, in addition to provenance and quality information, parti-
cipants used the activity of an author to determine the quality of apps.
Some participants focused on the set of apps made by the most prolific
authors. This indicates that quantity and frequency of contributions are
treated as a proxy for quality, a fact that has been observed in other
online peer production sites such as GitHub [70].

7.1.4. Risk aversion and exploration
All participants performed implicit cost-benefit analyses when de-

ciding how much of the variation space they would explore and which
variant they would use as their starting point. AIH made it easy to
access information on similarities between and details of variants.
Further visual cues allowed participants to quickly evaluate whether
the features they needed were available in a particular app. Finally,
accessing the source code of an app was possible by simply clicking on a
node. Lower cost access to information and ease of navigation meant
that when using AIH, participants were less risk averse, and they:
(1) explored a large portion of the variation space, (2) evaluated many
apps, and (3) if dissatisfied with a selected variant went back to ex-
ploring variants. In contrast, all individuals explored less in the base
condition.

7.1.5. Selection strategies
Participants used different strategies when navigating and evalu-

ating variants. Some individuals began their explorations from leaf
nodes, believing that removing features would be easier than adding
new ones. However, removing features and logic from existing code can
be difficult as there may be dependencies involved, and the impact of
removing a section of code could be felt in other modules. Given that
the language involved in our case is visual and modular, this was not an
enormous problem; however, participants did run into trouble when
they removed blocks or changed parameters inappropriately. This be-
havior indicates that environments might need to provide users with
“selective” undo – that is, automated support through which a user can
remove a feature, with the relevant pieces of code then being auto-
matically removed or marked for removal by the user.

In addition to avoiding faulty variants, participants also avoided
“child” variants that were derived from faulty ones, even though they
were not marked erroneous. For example, participant P10 commented
“If a branch had errors on it I stopped [at that app] thinking it couldn’t help
me out, because I can’t create something from an error”. This indicates the
need for explicit “good” as well as “bad” quality markers. An implica-
tion for end users is that erroneous apps left in public repositories are
going to affect how users perceive more recent, correct apps.

7.2. Implications for design

Based on observations and feedback from participants, we identified
several additional design guidelines (Table 6).

7.2.1. Handling errors
As noted, while most participants were able to use the error anno-

tations in AIH, they tended to bypass apps marked as erroneous.
Including markers inside erroneous apps to direct attention to sources
of errors (in the app) may help. Also as noted, some participants in-
correctly assumed that apps developed from erroneous apps would have
errors propagated to them too. Including percentages denoting total
correctness may further help with DR#7 (Include correctness and

efficiency information for variants) by reducing such assumptions. Hence,
if a child node of an erroneous app has been corrected by another au-
thor and is annotated with a green color bar, this may be helpful.

Similarly, if an author of a child app has found and fixed an error
that also affects the parent app, propagating the error notification to its
parent app would be helpful. Error propagation mechanisms may thus
help reduce errors in apps (DR#10).

7.2.2. Automatic feature abstraction
When selecting a variant, participants (1) looked for apps that had

the most features similar to those listed in the requirements, and
(2) evaluated the features and the context of the apps. Support for
automatic feature extraction from program code (DR#11) can help
users associate an app with its features. Here, by feature extraction, we
mean extracting certain features (a list of feature names) provided by
an application. Feature abstraction can also help in creating re-
commendation systems. Further, if automatic feature abstraction is
supported, then semantic search mechanisms within AIH may help
users find apps with desired features. Many feature location techniques
like dynamic analysis, static analysis, textual, and historical analysis
based on software repositories can be used to automate some or all of
this process [18]. Also, given that many participants initially focused on
leaf nodes in the graph view and then moved toward parent nodes,
providing lists of features added and removed could help users evaluate
and select more appropriate variants (DR#12).

Techniques like the Model Variants Comparison approach [49]
(MoVaC) can be extended for EUP variation management tools to
support feature abstraction and diff/merge functionalities. MoVaC
identifies both feature commonality and variability by comparing a set
of model variants. Each feature consists of a set of atomic model-ele-
ments. MoVaC also visualizes the identified features using a graphical
representation where common and variable features are explicitly
presented to users.

Feature abstraction can help create more sophisticated re-
commendation systems (DR#13). For example, as noted earlier, 50% of
the participants in the base case searched on language semantics; if
automatic feature abstraction were supported, then semantic search
mechanisms within the AIH environment could help users find apps
with desired features (DR#14).

7.2.3. Providing diff/merge functionality
Several participants looked for functionality in an app and wanted

to copy or reuse only that functionality. For example, P1 commented,
“The task asked me for a feature that would say the operators and numbers,
so [I needed] voice talk [referring to application]. The other thing I was
looking for was if one calculator had a log button so I could combine these
two”. If automatic feature abstraction were supported, it could help
users differentiate between variants at the feature level (DR#15) and
enable the merging of variants (DR#16). Since AIH does not provide
combine/merge capabilities, its current hierarchal visualization works
fine but in the presence of merge capabilities graph based visualization
over time may work better.

Table 6
Design requirements (Extended).

No. Design requirements emerging from formal study

DR#10 Automated support for error propagation and mitigation
DR#11 Associate features of the app automatically
DR#12 Annotate features that are added or removed
DR#13 Recommend apps to users
DR#14 Include a search facility within AIH
DR#15 Display differences between two variants
DR#16 Allow apps to be combined/merged
DR#17 Provide a roadmap of the app with ability to zoom in and out

S.K. Kuttal et al. Information and Software Technology 103 (2018) 55–74

71

7.2.4. Improving scalability
The size of an app tree will increase as the number of apps increases.

This will make labels difficult to read. Thus, there is a need to provide a
roadmap of the variation space (e.g., a radar view) that allows users to
zoom in and out in order to focus on a specific area of the space
(DR#17).

8. Related work

In this section we discuss related work in the area of representing
and transforming variations.

8.1. Variation management for professionals

The artifacts produced in software development evolve over time
because of changing requirements and the need to adapt to technolo-
gical progress. Software configuration management (SCM) sys-
tems [48,69] help manage software evolution and provide change
control for software products. Examples of SCM systems are CVS, SVN,
and Git. Professional software development all use some form of SCM
system.

Software product lines (SPLs) (e.g., [14,53] – for surveys and sys-
tematic literature reviews see [16,24,41,61])– constitute a sub-area of
software engineering in which variants are tracked using a (formalized)
feature model, and created by “configuring” the model. SPLs tend to be
used for large products, where the product architecture is rigorously
engineered and different products need to exist concurrently.

One of the more commonly used paradigms in SPL is feature-or-
iented software development (FOSD) [2]. FOSD allows software to be
assembled semi-automatically from features. Features are a specific
way of expressing variation in software. Approaches for implementing
features can be categorized as (1) annotative approaches [8,25,31], (2)
compositional approaches [9,50], (3) metaprogramming ap-
proaches [63,64] and (4) choice calculus [20,45]. Feature models are
also used to describe the structure of software product lines [52]. At a
high level, features and their relationships are described with the help
of feature models, which can be expressed in forms such as dia-
grams [13], algebras [28], and propositional formulas [4].

The foregoing approaches tend to target professional programmers
(with some exceptions noted below) and are unlikely to be adopted by
end users (as is evident from our survey results). Our approach provides
more lightweight, seamless support for end-user programmers.

8.2. Variation management for end user programmers

Programming styles and reuse tend to create large numbers of
variations. Users seeking reuse solutions must explore these variations.
Stolee et al. [66] conducted a study on how end-user programmers
program in Yahoo! Pipes – a web mashup programming environment.
They found that authors create highly similar programs. They found
that 60% of the programs in the repository had the same structure as
other programs, and 73% were within a distance of one from other
programs (where they defined distance in terms of additions, deletions,
and substitutions of modules (nodes) and wires (edges) to obtain one
program from another). They found that 43% of the programs were
created by tweaking and were structurally similar to programs they
created previously. This work emphasized the occurrence of variants in
end-user repositories. They found that exploration of the repository was
slowed by the substantial manual effort needed to create, compare and
understand alternatives. This has been addressed by prior research in
three primary ways, as follows.

8.2.1. Product configuration support for end users
Some researchers in the SPL community have developed tools meant

to help end users in product configuration tasks. Rosa et al. [42] de-
veloped a toolset to capture configurable processes for film production

by studying system variability based on a questionnaire modeled to
include order dependencies and domain constraints. Rabiser et al.[55]
developed a configuration tool, DOPLER CW, by analyzing existing
configuration tools to identify key capabilities using the cognitive di-
mensions of a notations framework for guiding end users.

8.2.2. Exploring variations
Researchers have investigated the advantages of supporting varia-

tions for interface design practices. Terry et al. [68] present “Side
Views”, a model for interface designers that lets them compare multiple
graphic designs by varying parameters. Later they created “Parallel
Paths” to generate, manipulate and compare alternative solutions [51].
Parallel Paths was designed by considering what-if tools, augmented
histories, and enhanced previewing mechanisms. Hartmann et al. [27]
propose Juxtapose to generate alternative solutions and move between
them by changing application logic and interface parameters. Another
tool, d.note [26], helps designers selectively edit and execute source
code. Kumar et al. [35] present Bricolage [35] another tool for web
interface designers that allows users to transfer the style and layout of
one page to another; this allows interface designers to transfer designs
across different websites.

Our approach differs from these approaches as we are targeting end-
user programmers, not interface designers. We are also managing var-
iants at the code level as well as the design level, and for visual pro-
gramming languages. Moreover, we allow users to create variants
without changing their work process or employing extra effort.

8.2.3. Managing and analyzing variations through visualizations
Various mechanisms for automatically managing variations without

affecting the workflow or behavior of users have been studied. Karlson
et al. [30] introduce the concept of copy-aware computing ecosystems.
They keep all digital artifacts as a single entity and call this a “version
set”. They show that such personal information management systems
can help users keep track of changes and of the semantics behind copy
operations. Our approach differs from theirs in that we focus on end-
user programmers, and on program variations rather than document
variations. Moreover, we consider more than just the copying habits of
users.

In our own earlier work we created a version (not variant) man-
agement system for end users, Pipes Plumber, which tracks versions of
Yahoo Pipes programs [40]. In Pipes Plumber, versions are represented
with abstract list views of features. Pipes Plumber also denotes base-
lines and uses tags to represents versions that are erroneous, tested or
untested. Controlled studies have shown that Pipes Plumber can help
end users with exploration and backtracking through versions of code.

The approach presented in this article is supplementary to Pipes
Plumber as we focus on visualizing variants. Pipes Plumber keeps track
of minor changes in the code, i.e., at the workspace level, while AIH
keep track of final changes in the code. AIH also provides additional
provenance information on variants and shows them hierarchically and
not as a linear list. AIH also keeps all apps in close proximity with other
variations based on context; this helps support “orienteering” ap-
proaches for finding information based on context and origin.
Information related to similarity, error status and project profiles helps
users reuse and explore variants to find relevant variants for a parti-
cular context.

9. Conclusions and future work

This article is the first to present an investigation of the usage of
variants by end-user programmers. Our survey allowed us to pose an-
swers to three questions.

• RQ1: How and why do end users create variants?Our survey results
revealed that end users do indeed reuse programs they create and
code shared with teams. This suggests that being able to understand

S.K. Kuttal et al. Information and Software Technology 103 (2018) 55–74

72

the differences between variants is important. Further, when
working in teams, having information about the authors of code is
important.

• RQ2: How do end users find variants?While looking for variants, end
users prefer to run code and look at outputs, to access source code
and meta information such as filenames, and to refer to the creation
and update dates of programs. When selecting variants users prefer
to look at their major features such as correctness, similarity and
authorship information.

• RQ3: How do end users manage variants?End users rely primarily on
memory to track changes. They seldom make use of online or con-
figuration management tools.

The results of our survey motivated the need for a variation man-
agement system by which end users can access and assess variants.
Therefore, we developed AppInventorHelper (AIH), a variation aware
system for end users working in the App Inventor environment. Our
formative user study showed that AIH helps organize information on
variants. We also found that AIH helps users explore and reuse variants,
and understand code evolution.

Our study of AIH uncovered several potential new design require-
ments. Participants wished to see explicit information on whether code
was correct or not. They wished to have features abstracted to help
them find apps and determine the differences and similarities between
variants, and they wanted to have a roadmap with the ability to zoom
in and out. Our research indicates that incorporating these new re-
quirements into AIH may significantly help improve users’ interactions
with the system.

Acknowledgments

We thank David Montz for helping with parts of our task im-
plementation and empirical study. We also thank our pilot study and
usability study participants.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.infsof.2018.06.008.

References

[1] AI, App inventor website, 2016.
[2] S. Apel, C. Kastner, An Overview of Feature-Oriented Software Development,

(2009).
[3] S.L. P. B. A. Kitchenham, Personal opinion surveys, Guide to Advanced Empirical

Software Engineering, 2008, pp. 63–92.
[4] D. Batory, Feature models, grammars, and propositional formulas, Proceedings of

the International Conference on Software Product Lines, (2005), pp. 7–20.
[5] L. Beckwith, M. Burnett, V. Grigoreanu, S. Wiedenbeck, Gender HCI: what about the

software? Computer 39 (11) (2006) 97–101.
[6] J. Benedek, T. Miner, Measuring desirability: new methods for evaluating desir-

ability in a usability lab setting, Proceedings of Usability Professionals Association,
(2002), pp. 8–12.

[7] A. Blackwell, First steps in programming: a rationale for attention investment
models, Proceedings of the IEEE Symposium on Human Centric Computing
Languages and Environments, (2002), pp. 2–10.

[8] Q. Boucher, A. Classen, P. Heymans, A. Bourdoux, L. Demonceau, Tag and prune: a
pragmatic approach to software product line implementation, Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering, (2010),
pp. 333–336.

[9] G. Bracha, W. Cook, Mixin-based inheritance, SIGPLAN Notices 25 (10) (1990)
303–311.

[10] J. Brandt, P.J. Guo, J. Lewenstein, M. Dontcheva, S.R. Klemmer, Opportunistic
programming: writing code to prototype, ideate, and discover, IEEE Softw. 26 (5)
(2009) 18–24.

[11] M. Burnett, L. Beckwith, S. Wiedenbeck, S.D. Fleming, J. Cao, T.H. Park,
V. Grigoreanu, K. Rector, Gender pluralism in problem-solving software, Interact.
Comput. 23 (5) (2011) 450–460.

[12] M. Burnett, S.D. Fleming, S. Iqbal, G. Venolia, V. Rajaram, U. Farooq,
V. Grigoreanu, M. Czerwinski, Gender differences and programming environments:
across programming populations, Proceedings of the International Symposium on
Empirical Software Engineering and Measurement, (2010), pp. 28:1–28:10.

[13] F. Cao, B.R. Bryant, C.C. Burt, Z. Huang, R.R. Raje, A.M. Olson, Automating feature-
oriented domain analysis, Proceedings of the 2003 International Conference on
Software Engineering Research and Practice, (2003), pp. 944–949.

[14] P. Clements, Software Product Lines: Practices and Patterns, Addison-Wesley
Longman Publishing Co., Inc., 2001.

[15] A. Cypher, M. Dontcheva, T. Lau, J. Nichols, No Code Required: Giving Users Tools
to Transform the Web, Morgan Kaufmann, 2010.

[16] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, A. Wasowski, Cool features and
tough decisions: a comparison of variability modeling approaches, Proceedings of
the Sixth International Workshop on Variability Modeling of Software-Intensive
Systems, (2012), pp. 173–182.

[17] B.C.D.A.J.E.H.D.I.K. Sjøberg, Tore Dybå, building theories in software engineering,
Guide to Advanced Empirical Software Engineering, (2008), pp. 312–336.

[18] B. Dit, M. Revelle, M. Gethers, D. Poshyvanyk, Feature location in source code: a
taxonomy and survey, J. Softw. 25 (1) (2013) 53–95.

[19] K. El-Arini, C. Guestrin, Beyond keyword search: Discovering relevant scientific
literature, Proceedings of the ACM International Conference on Knowledge
Discovery and Data Mining, (2011), pp. 439–447.

[20] M. Erwig, E. Walkingshaw, The choice calculus: a representation for software
variation, ACM Trans. Softw. Eng. Method. 21 (1) (2011) 6:1–6:27.

[21] J. Estublier, D. Leblang, G. Clemm, R. Conradi, W. Tichy, A. van der Hoek,
D. Wiborg-Weber, Impact of the research community on the field of software
configuration management: summary of an impact project report, ACM SEN 27 (5)
(2002) 31–39.

[22] S. Fischer, L. Linsbauer, R.E. Lopez-Herrejon, A. Egyed, Enhancing clone-and-own
with systematic reuse for developing software variants, Proceedings of the
International Conference on Software Maintenance and Evolution, (2014), pp.
391–400.

[23] R.L.F. Forrest Shull, building theories from multiple evidence sources, Guide to
Advanced Empirical Software Engineering, (2008), pp. 337–364.

[24] M. Galster, D. Weyns, D. Tofan, B. Michalik, P. Avgeriou, Variability in software
systems – a systematic literature review, IEEE Trans. Softw. Eng. 40 (3) (2014)
282–306.

[25] GNU, GNU Project. The C Preprocessor, Free Software Foundation, 2009.
[26] B. Hartmann, S. Follmer, A. Ricciardi, T. Cardenas, S.R. Klemmer, d.note:revising

user interfaces through change tracking, annotations, and alternatives, Proceedings
of the ACM Conference on Human Factors in Computing Systems, (2010), pp.
493–502.

[27] B. Hartmann, L. Yu, A. Allison, Y. Yang, S.R. Klemmer, Design as exploration:
creating interface alternatives through parallel authoring and runtime tuning,
Proceedings of the ACM Symposium on User Interface Software and Technology,
(2008), pp. 91–100.

[28] P. Höfner, R. Khedri, B. Möller, Feature Algebra, in: Formal Methods, volume 4085
of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2006, pp.
300315.

[29] M. Jones, S. Scaffidi, Obstacles and opportunities with using visual and domain-
specific languages in scientific programming, Proceedings of the IEEE Symposium
on Visual Languages and Human-Centric Computing, (2011), pp. 9–16.

[30] A.K. Karlson, G. Smith, B. Lee, Which version is this?: Improving the desktop ex-
perience within a copy-aware computing ecosystem, Proceedings of the ACM
Conference on Human Factors in Computing Systems, (2011).

[31] C. Kästner, S. Apel, M. Kuhlemann, Granularity in software product lines,
Proceedings of the International Conference on Software Engineering, (2008), pp.
311–320.

[32] A.J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig, C. Scaffidi,
J. Lawrance, H. Lieberman, B. Myers, M.B. Rosson, G. Rothermel, M. Shaw,
S. Wiedenbeck, The state of the art in end-user software engineering, ACM Comput.
Surv. 43 (3) (2011) 21:1–21:44.

[33] A.J. Ko, T.D. LaToza, M.M. Burnett, A practical guide to controlled experiments of
software engineering tools with human participants, Emp. Softw. Eng. 20 (1) (2015)
110–141.

[34] C.W. Krueger, Variation management for software production lines, Proceedings of
the International Conference on Software Product Lines, (2002), pp. 37–48.

[35] R. Kumar, J.O. Talton, S. Ahmad, S.R. Klemmer, Bricolage: Example-based re-
targeting for web design, Proceedings of the ACM Conference on Human Factors in
Computing Systems, (2011), pp. 2197–2206.

[36] S.K. Kuttal, Leveraging variation management to enhance end users’ programming
experience, Ph.D. dissertation. University of Nebraska, 2014.

[37] S.K. Kuttal, A. Sarma, A. Swearngin, G. Rothermel, Versioning for mashups – an
exploratory study, Proceedings of the International Conference on End-User
Development, (2011), pp. 25–41.

[38] S.K. Kuttal, S. Sarma, G. Rothermel, History repeats itself more easily when you log
it: Versioning for mashups, Proceedings of the IEEE Symposium on Visual
Languages and Human-Centric Computing, (2011), pp. 69–72.

[39] S.K. Kuttal, S. Sarma, G. Rothermel, Debugging support for end-user mashup pro-
gramming, Proceedings of the ACM Conference on Human Factors in Computing
Systems, (2013), pp. 1609–1618.

[40] S.K. Kuttal, S. Sarma, G. Rothermel, On the benefits of providing versioning support
for end-users: an empirical study, Trans. Comput. Hum. Interact. 21 (2) (2014)
9:1–9:43.

[41] C. L., M. Ali Babar, A systematic review of evaluation of variability management
approaches in software product lines, Inf. Softw. Technol. 53 (4) (2011) 344–362.

[42] M. La Rosa, W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, Questionnaire-
based variability modeling for system configuration, Softw. Syst. Model. 8 (2)
(2009) 251–274.

[43] LabVIEW, Labview website, 2016.

S.K. Kuttal et al. Information and Software Technology 103 (2018) 55–74

73

https://doi.org/10.1016/j.infsof.2018.06.008
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0001
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0001
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0002
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0002
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0003
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0003
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0004
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0004
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0004
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0005
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0005
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0005
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0006
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0006
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0006
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0006
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0007
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0007
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0008
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0008
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0008
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0009
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0009
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0009
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0010
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0010
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0010
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0010
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0011
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0011
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0011
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0012
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0012
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0013
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0013
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0014
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0014
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0014
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0014
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0015
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0015
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0016
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0016
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0017
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0017
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0017
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0018
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0018
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0019
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0019
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0019
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0019
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0020
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0020
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0020
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0020
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0021
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0021
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0022
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0022
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0022
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0024
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0024
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0024
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0024
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0025
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0025
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0025
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0025
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0027
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0027
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0027
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0028
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0028
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0028
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0029
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0029
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0029
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0030
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0030
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0030
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0030
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0031
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0031
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0031
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0032
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0032
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0033
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0033
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0033
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0035
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0035
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0035
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0036
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0036
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0036
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0037
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0037
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0037
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0038
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0038
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0038
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0039
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0039
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0040
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0040
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0040

[44] J.R. Landis, G.G. Koch, The measurement of observer agreement for categorical
data, Biometrics 33 (1) (1977).

[45] D. Le, E. Walkingshaw, M. Erwig, #ifdef confirmed harmful: promoting under-
standable software variation, Proceedings of the IEEE Symposium on Visual
Languages and Human-Centric Computing, (2011), pp. 143–150.

[46] C.H. Lewis, Using the “Thinking Aloud” method in cognitive interface design, RC
9265, IBM, 1982.

[47] H. Lieberman, F. Paternó, V. Wulf, End User Development, Springer, first ed. 2006.
[48] S.A. MacKay, The state of the art in concurrent, distributed configuration man-

agement, Selected Papers from the ICSE SCM-4 and SCM-5 Workshops, on Software
Configuration Management, (1995), pp. 180–193.

[49] J. Martinez, T. Ziadi, J. Klein, Y. Traon, Identifying and visualising commonality
and variability in model variants, Proceedings of the European Conference on
Modelling Foundations and Applications, (2014), pp. 117–131.

[50] M. Mezini, K. Ostermann, Variability management with feature-oriented program-
ming and aspects, SIGSOFT Softw. Eng. Notes 29 (6) (2004) 127–136.

[51] T. Michael, E.D. Mynatt, K. Nakakoji, Y. Yamamoto, Variation in element and ac-
tion: supporting simultaneous development of alternative solutions, Proceedings of
the ACM Conference on Human Factors in Computing Systems, (2004), pp.
711–718.

[52] D.L. Parnas, On the design and development of program families, IEEE Trans. Softw.
Eng. SE-2 (1) (1976) 1–9.

[53] K. Pohl, G. Böckle, F.J. Linden, Software Product Line Engineering: Foundations,
Principles and Techniques, Springer-Verlag New York, Inc., 2005.

[54] Popularity of App Inventor, Popularity of app inventor, 2017.
[55] R. Rabiser, P. Grünbacher, M. Lehofer, A qualitative study on user guidance cap-

abilities in product configuration tools, Proceedings of the International Conference
on Automated Software Engineering, (2012), pp. 110–119.

[56] S.S. Ragavan, B. Pandya, D. Piorkowski, C. Hill, S.K. Kuttal, A. Sarma, M. Burnett,
PFIS-V: Modeling foraging behavior in the presence of variants, Proceedings of the
CHI Conference on Human Factors in Computing Systems, (2017), pp. 6232–6244.

[57] L.M. Rea, R.A. Parke, Designing and Conducting Survey Research: A Comprehensive
Guide, (2015).

[58] M.B. Rosson, J.M. Carroll, The reuse of uses in smalltalk programming, Trans.
Comput. Hum. Interact. 3 (1996) 219–253.

[59] I.J.M. Ruiz, M. Nagappan, B. Adams, A.E. Hassan, Understanding reuse in the

android market, 20th IEEE International Conference on Program Comprehension
(ICPC), (2012), pp. 113–122.

[60] C. Scaffidi, M. Shaw, B. Myers, Estimating the numbers of end users and end user
programmers, Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing, (2005), pp. 207–214.

[61] P.Y. Schobbens, P. Heymans, J.C. Trigaux, Feature diagrams: a survey and a formal
semantics, Proceedings of the IEEE International Requirements Engineering
Conference, (2006), pp. 139–148.

[62] C.B. Seaman, Qualitative methods in empirical studies of software engineering.
[63] T. Sheard, Accomplishments and research challenges in meta-programming,

Proceedings of the 2Nd International Conference on Semantics, Applications, and
Implementation of Program Generation, (2001), pp. 2–44.

[64] T. Sheard, A Taxonomy of Meta-Programming Systems, (2016).
[65] S. Srinivasa Ragavan, S.K. Kuttal, C. Hill, A. Sarma, D. Piorkowski, M. Burnett,

Foraging among an overabundance of similar variants, Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems, (2016), pp. 3509–3521.

[66] K.T. Stolee, S. Elbaum, A. Sarma, Discovering how end-user programmers and their
communities use public repositories: a study on yahoo pipes, Inf. Softw. Technol. 55
(2013) 1289–1303.

[67] J. Teevan, C. Alvarado, M.S. Ackerman, D.R. Karger, The perfect search engine is
not enough: a study of orienteering behavior in directed search, Proceedings of the
ACM Conference on Human Factors in Computing Systems, (2004), pp. 415–422.

[68] M. Terry, E.D. Mynatt, Side views: Persistent, on-demand previews for open-ended
tasks, Proceedings of the ACM Symposium on User Interface Software and
Technology, (2002), pp. 71–80.

[69] W.F. Tichy, RCS-A system for version control, Software – Practice & Experience,
(1985), pp. 637–654.

[70] J. Tsay, L. Dabbish, J. Herbsleb, Influence of social and technical factors for eval-
uating contribution in GitHub, Proceedings of the International Conference on
Software Engineering, (2014), pp. 356–366.

[71] D. Wolber, App Inventor and real-world motivation, Proceedings of the ACM
Technical Symposium on Computer Science Education, (2011), pp. 601–606.

[72] Y. Pipes, Yahoo Pipes, 2014.
[73] Y. Yoon, B. Myers, An exploratory study of backtracking strategies used by devel-

opers, Proceedings of the International Workshop on Cooperative and Human
Aspects of Software Engineering, (2012), pp. 138–144.

S.K. Kuttal et al. Information and Software Technology 103 (2018) 55–74

74

http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0041
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0041
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0042
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0042
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0042
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0043
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0043
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0045
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0045
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0045
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0046
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0046
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0046
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0047
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0047
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0048
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0048
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0048
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0048
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0049
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0049
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0050
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0050
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0051
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0051
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0051
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0052
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0052
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0052
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0053
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0053
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0054
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0054
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0055
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0055
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0055
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0056
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0056
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0056
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0057
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0057
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0057
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0058
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0058
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0058
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0059
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0060
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0060
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0060
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0061
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0061
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0061
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0062
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0062
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0062
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0063
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0063
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0063
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0064
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0064
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0065
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0065
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0065
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0066
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0066
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0067
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0067
http://refhub.elsevier.com/S0950-5849(18)30119-8/sbref0067

	What happened to my application? Helping end users comprehend evolution through variation management
	Introduction
	Overall research methodology
	Online survey
	Recruitment
	Survey participants’ demographics
	How and why do end users share variants?
	How do end users find variants?
	How do end users manage variants?
	Limitations
	Summary

	Approach: AppInventorHelper
	App Inventor
	AppInventorHelper
	Design decisions
	Relating variants to user experience: a scenario
	System architecture and usage

	User study design
	Participants
	Study setup
	Tasks
	Analysis methodology
	Threats to validity

	Results
	Reuse behavior of users with and without AIH
	Finding a usage context
	Evaluating a usage context
	Debugging a usage context

	Usability of AIH
	Microsoft desirability toolkit
	Exit survey

	Discussion and implications
	End-user behavior
	Evaluating the variation space
	Using provenance data
	Assessing quality
	Risk aversion and exploration
	Selection strategies

	Implications for design
	Handling errors
	Automatic feature abstraction
	Providing diff/merge functionality
	Improving scalability

	Related work
	Variation management for professionals
	Variation management for end user programmers
	Product configuration support for end users
	Exploring variations
	Managing and analyzing variations through visualizations

	Conclusions and future work
	Acknowledgments
	Supplementary material
	References

