
Development Context Driven Change Awareness and
Analysis Framework

Anita Sarma, Josh Branchaud
Matthew B. Dwyer

Univ. of Nebraska, Lincoln, USA
{asarma, jbrancha, dwyer}@cse.unl.edu

Suzette Person‡, Neha Rungta†

‡NASA Langley Research Center, USA
†NASA Ames Research Center, USA

{suzette.person,neha.s.rungta}@nasa.gov

ABSTRACT
Recent work on workspace monitoring allows conflict pre-
diction early in the development process, however, these
approaches mostly use syntactic differencing techniques to
compare different program versions. In contrast, traditional
change-impact analysis techniques analyze related versions
of the program only after the code has been checked into
the master repository. We propose a novel approach, De-
CAF (Development Context Analysis Framework), that
leverages the development context to scope a change impact
analysis technique. The goal is to characterize the impact of
each developer on other developers in the team. There are
various client applications such as task prioritization, early
conflict detection, and providing advice on testing that can
benefit from such a characterization. The DeCAF frame-
work leverages information from the development context
to bound the iDiSE change impact analysis technique to
analyze only the parts of the code base that are of interest.
Bounding the analysis can enable DeCAF to efficiently com-
pute the impact of changes using a combination of program
dependence and symbolic execution based approaches.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—program-
ming teams; D.2.4 [Software Engineering]: Software/
Program Verification

General Terms
Verification, Algorithms

Keywords
Change impact analysis, distributed software development,
change awareness, conflict prediction

1. INTRODUCTION
Software development is largely performed in teams and

involves parallel development. The distributed development

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 - June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2768-8/14/05 ...$15.00.

paradigm requires team members to coordinate their changes.
A developer needs to understand how his changes may im-
pact other ongoing changes [9] and how changes made by
other developers may impact his tasks. Teams typically
depend on software configuration management (SCM) sys-
tems to manage team development; developers use private
workspaces as their development sandboxes and synchronize
their changes periodically with a central repository [2].

Direct and indirect conflicts occur when developers are not
fully aware of ongoing changes and their impact. A merge
conflict is a direct conflict that occurs when a developer
attempts to check-in her changes, but, a divergent revision
of the file exists in the repository. An indirect conflict occurs
when the program behavior assumed by one developer is
changed by another developer in parallel. Both direct and
indirect conflicts can lead to build and test failures [9].

Traditional change impact analysis techniques identify the
impact of a change set on the original code base, whereas
conflict prediction requires the computation of a developer’s
changes on not only the central code base, but, also on the
other ongoing changes in remote, parallel workspaces. De-
signing the right change impact analysis technique that can
assist in development tasks can be challenging. Some of the
challenges are determining (a) how to perform an analysis
when there are no changes (i.e., changes that are proposed or
not yet completed), (b) which versions should be treated as
source and target programs when there are many developers,
(c) how to bound the scope of the analysis to answer specific
questions and facilitate scalability, (d) how to configure the
precision of the analysis such that it provides meaningful re-
sults in a timely manner, and (e) how to process and present
the results such that they are useful to the developers.

In this work, we propose a novel context driven change
awareness and analysis framework, Development Context
Analysis Framework (DeCAF), that leverages the context of
the distributed software development environment to scope
the analysis space. DeCAF can be configured to scope the
region over which impact is calculated, the precision of the
analysis, and the extent of analysis based on the client re-
quirements. DeCAF uses a multi-stage change impact anal-
ysis, iDiSE, as the underlying analysis engine [7, 8].

2. SCENARIOS
Consider a scenario where a development team consists

of four developers: Joe, Sally, Alice, and Bob. Figure 1
depicts this scenario where team members have their own
local workspaces (or local repositories) and a set of files and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ICSE Companion’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2768-8/14/05...$15.00
http://dx.doi.org/10.1145/2591062.2591100

404

m1

m2

m3

m4

m5

m6

m7

m8

m9

m10

m11

m12

Repo

f1 f2

f3 f4

f5 f6

m5

m6

Joe

f3

m3

m10

Sally

f2

m1

m2

m3

m4

Alice

f1 f2

m7

m8

Bob

f4

Figure 1: Change Scenarios

tasks they are working on1, e.g., Bob is working on file f4.
Figure 1 depicts the repository for the system (repo), which
consists of six files, f1 - f6, comprised of 12 methods, m1 -
m12. Let us now consider three development scenarios.

Task Prioritization. Imagine that Alice has been assigned
two tasks, t1 and t2. Task t1 involves modifications to
method m2 (shown in light gray) and task t2 involves modifi-
cations to method m3 (shown in dark gray with white text).
Ideally she will select the task that will have the least im-
pact on the rest of the team’s ongoing work. Furthermore,
imagine that Bob’s current work is comprised of a task, t3,
which is on the critical path to an upcoming release; we
depict t3 with a light gray shading—method m7 in file f4.
Alice would like to ensure that her changes do not impact
any task that is on the critical path to a release (here, Bob’s
task t3). Therefore, she wishes to know the answer to the
question: “Could working on task t1 impact any critical task
(t3)?”. The dashed sequence of edges illustrates that such
an impact is possible and Alice can prioritize her tasks ac-
cordingly, i.e., by working on task t2.

Conflict Detection. Now assume that Alice decides to
work on task t2 (by modifying m3). While Alice is modify-
ing m3, Sally also starts to edit m3 and Joe starts working
on method m5 (f3). Note that in this case, once everyone
has completed their changes there will be a merge (direct)
conflict between Alice and Sally, and an indirect conflict
between Alice and Joe (the potential impact is depicted by
the dotted calling sequence). Also assume that while making
her changes Alice would like to know the answer to the ques-
tion: “How are my changes going to conflict with changes
that other developers are working on?”. Since both Alice
and Sally are modifying m3, a direct conflict exists, but the
dotted sequence of edges also illustrates a potential indirect
conflict with Joe – through m5. These answers allow Alice
to determine whom to communicate with on her team.

Testing Advice. Now assume that Alice’s team practices
code ownership, whereby changes are only made to a file by
the developer who owns that particular file. Here, her code
ownership includes files f1 and f2, but not f4. Note that we
can deduce such code ownership from the versioning system,
and that if the team follows strict code ownership, Alice
would not face a merge conflict with Sally, as in our previous

1We depict only the files each team member is currently
working on; local workspaces may contain copies of addi-
tional files from the repo to enable building of the workspace.

CM
DB

Results Processing Configuration

Client Analysis

Task
Prioritization

Triggers
Configuration

Results

Staged Impact Analysis

Syntactic
Differencing Static Analysis Semantic

Analysis

Test Case
Analysis

...

......

Conflict
Detection

...

Figure 2: DeCAF Architecture

scenario. Once Alice finishes her changes she would like to
know the answer to the question: “How much testing should
I do?”. The answer to her question will help her identify
which test cases she needs to execute so that methods that
may be impacted by her changes are tested. If she is aware
that her changes extend beyond her code ownership, she
might do more extensive testing.

3. APPROACH
The DeCAF change awareness and prediction framework

is shown in Figure 2. At the heart of the DeCAF frame-
work is a client analysis which uses information from triggers
based primarily on developer activity and user-specified con-
figurations to (i) select the precision of the analysis, (ii) pro-
vide bounds for the analysis, and (iii) determine when and
how often the analysis should be performed. The staged
change impact analysis in DeCAF leverages the specified
bounds and precision to scope the analysis. Note that the
semantic aspect of the analysis allows DeCAF to provide
more and better information compared to other state of the
art techniques such as Palantir [9]. Finally, the results of
the staged analysis are processed and formatted such that
they can be mapped back to the client analysis.

Actual versus Potential Impact. DeCAF can be con-
figured to compute the impact of actual changes made to the
local workspace or those committed to the central reposi-
tory. Local changes can be tracked by instrumenting the
IDE, e.g., tracking the task context in Mylyn [6]. DeCAF
can also be configured to compute the potential impact of
planned changes when provided with code locations that the
developer intends to change. In the task prioritization sce-
nario, Sally uses the client to specify her intended changes
in method m2 in f1 or in method m3 in f2.

Analysis Direction. In certain development tasks, such
as task prioritization, a developer may want to gauge the im-
pact of his changes on other developers. However, in other
tasks, such as conflict detection, a developer may need to
understand the impact of changes made by other developers
on his code. DeCAF supports computing the impact in ei-
ther direction providing configuration options to specify the
source and target versions.

Analysis Extent. Traditional change impact analyses
compute the impact of a given set of changes in a program

405

version [7, 8]. DeCAF can be configured to additionally com-
pute how two or more distinct change sets may impact each
other. An impact set is first generated for each change set
and then an intersection of the impact sets is computed. In
the conflict detection scenario, the impact of Alice’s changes
is intersected (compared) with the impact of Joe’s changes.

Analysis Scope. It is computationally expensive to per-
form the change impact analysis on the entire code base,
moreover, the developer who initiates the analysis is often
interested in only what impact the changes may have on
the parts of the code she is currently changing. The part
of code relevant to the developer can be marked as a region
of interest (ROI) in DeCAF. The ROI can be specified in
terms of a set of files, classes or methods, or using heuris-
tics, such as distance heuristics that include only methods
within a specified distance in the call graph from the changed
method. Scope specified using distance heuristics is easy to
compute using an inexpensive call-graph analysis, and sub-
sequent analyses may perform more detailed analysis of the
dependence chains in order to reduce the scope. In the task
prioritization scenario in Section 2, the call-graph analysis
generates 〈m2,m6,m10,m8,m7,m9〉–a call sequence for when
Alice is considering a prospective change to m2 (task t1) and
the ROI is represented by Bob’s ongoing work on m7. The
analysis is scoped by truncating the analysis at methods in
the ROI, thus eliminating the analysis of m9.

Analysis Precision. The underlying change impact anal-
ysis, iDiSE, performs a series of change impact analyses, us-
ing the results of an imprecise (but also inexpensive) static
analysis to drive a more precise (and expensive) technique
based on symbolic execution. This enables DeCAF to bal-
ance the trade-off between the cost and precision of the anal-
ysis based on the information necessary to support the de-
velopment task. In the task prioritization scenario, once the
analysis detects a conflict, it can be terminated. However, if
a conflict exists and the developer wants to know the details
of the conflict, she can configure DeCAF to use iDiSE to
compute the details of the conflict.

Results Format. The change impact analysis results of
iDiSE can be represented in terms of source code locations
or program behaviors that may be impacted; the latter ex-
pressed as constraints on program variable values computed
by symbolic execution. For some development tasks, such
as the task prioritization scenario in the previous section, it
is useful to also map the iDiSE results onto the development
context to identify the impacted developers, tasks, or test
cases. DeCAF supports such mappings by using information
stored in the SCM system, source code annotations, project
task definitions and assignments, or additional information
provided by the user.

Thus far, we have discussed how DeCAF can be config-
ured based on the development task and the type of answers
sought. We can imagine other types of development contexts
that could be used to scope the change impact analysis. For
example, if a user is interested in knowing only the impact
of her changes that are outside her code ownership, then
DeCAF need not perform an in-depth analysis if all of the
impacted code is within her code ownership. Similarly, if the
user is interested in knowing how her changes may affect a
particular developer or a particular file, then the impact on
only those entities needs to be computed. Therefore, devel-
opment heuristics such as code ownership, active workspaces
(where files are being modified by users), team policies (code

that is “frozen” before a release, or public APIs that should
not be impacted) could also be used to scope the analysis
performed by DeCAF.

4. DISCUSSION
In this section we discuss the parts of the DeCAF archi-

tecture that we have implemented, our current challenges,
and our proposed solutions to those challenges. The key el-
ements of the DeCAF architecture include:

◦ Triggers to determine when and how often to invoke the
analysis, based on developer activity.

◦ Configurations to provide a mechanism to control the anal-
ysis scope and specify the required precision.

◦ The Client Analysis uses information from the configura-
tion to compute the scope of the analysis.

◦ The Staged Change Impact Analysis uses options specified
in the configuration to compute the set of impacted artifacts.

◦ Results Processing uses the impacted artifacts to provide
answers for a specific client analysis.

Certain components of the DeCAF architecture can be de-
signed and implemented more easily than others. The imple-
mentation of the triggers, configurations, and client analysis
in the DeCAF framework is straightforward. For a client
analysis such as conflict detection, the analysis is triggered
by a workspace monitor when a developer successfully com-
piles his code or commits the code to his local repository in
a distributed SCM system such as Git. While the analysis
for a task prioritization activity is explicitly invoked by the
developer, the configurations for the scope and the precision
of the analysis are specified by the developers.

The client analysis is a core component of the DeCAF
engine. It uses the information from the triggers and con-
figurations to generate the set of analysis artifacts for the
change impact analysis and processes the results from the
change impact analysis. The client analysis is agnostic to the
underlying change impact analysis to a large extent. This
design decision allows different change impact analyses to
be plugged into the DeCAF framework. Most change im-
pact analysis techniques take two related program versions
as inputs. The client analysis includes additional computa-
tion algorithms to translate the impact results to elements
in the development context. For example, if Alice is inter-
ested in the impact of her changes on both Bob and Joe,
the client analysis invokes the impact analysis twice where
I0 := (Alice, Bob) and then I1 := (Alice, Joe), and then
generates the intersection of the two impact sets I0 and I1
to compute the impact on both Bob and Joe.

We use iDiSE as the change impact analysis within the
DeCAF framework. There are three stages to the iDiSE
analysis (a) syntactic differencing, (b) static change impact
computation, and (c) behavioral change impact computation
using symbolic execution [7, 8]. These are increasingly more
expensive to compute, but they also provide better preci-
sion. An important goal in this work is to reduce the number
of false positives reported to developers by techniques based
solely on syntactic or static impact analysis algorithms. The
number of false positives can be reduced by using the seman-
tic analysis component of iDiSE that is based on symbolic
execution. While this approach can produce generally more

406

precise analysis results, it also introduces a significant chal-
lenge: symbolic execution is generally performed on a spe-
cific program unit, e.g., method. We are currently working
on approaches that limit symbolic execution to specific parts
of the program in a way that provides meaningful results
in the development context. This involves devising bound-
ing schemes for symbolic execution that are based on the
development context rather than the traditional bounding
mechanisms such as depth. Development of these bound-
ing techniques will be a key to not only scalability of the
more precise symbolic execution based analysis, but, is also
important to generate information relevant to a particular
client analysis.

Finally, the client analysis processes the output of the
change impact analysis to generate the set of impacted re-
sults: impacted program statements, path conditions, or test
cases. We are currently working on algorithms that will al-
low us to process the output to answer specific questions,
such as which task should be prioritized over another.

5. RELATED WORK
Several recent approaches based on heuristics and simple

program analysis have attempted to address the problem
of conflict prediction. FastDash [1] uses workspace moni-
toring to identify when the same file is being updated in
multiple workspaces to detect merge conflicts. Syde [5] per-
forms a more sophisticated analysis to extract changes at
the Abstract Syntax Tree level to precisely identify the type
of change. CollabVS [3] and Palantir [9] use a combination
of workspace monitoring and simple syntactic analysis (e.g.,
call-graph analysis) to identify direct and indirect conflicts.
Crystal [2] and the approach by Guimarães et al. [4] inte-
grate ongoing changes by maintaining a shadow repository
where each local commit (in the case of Crystal) and each
change in the workspace (in the work by Guimarães et al.),
is integrated and built, and test scripts executed to iden-
tify which changes would conflict and at what level (merge,
build, or test failures). Safe Commit [10] uses a combination
of impact analysis and test/build scripts. It first decomposes
changes to their atomic level and then identifies the set of
dependent changes that can be safely committed.

Existing workspace awareness techniques for distributed
development environments identify the impact of changes
occurring in parallel workspaces. For example, Crystal [2]
analyzes a single stable change in a workspace with respect
to the repository, and Palantir [9] analyzes the impact of
ongoing changes across workspace pairs.

Our work differs from existing approaches in that it lever-
ages information about the development context to config-
ure the underlying change impact analysis to help answer
the kinds of questions that are being asked by the client.
These client requirements drive the level and precision of
the change impact analysis that is performed.

6. CONCLUSIONS
In a distributed software development environment con-

flicts may arise due to changes being made in parallel by
different developers. In this work we present Development
Context Analysis Framework (DeCAF) which leverages the
development context to scope a change impact analysis tech-
nique. The key novelty of DeCAF is that it attempts to
characterize the impact of one developer’s work on other

developers, and the impact of changes being made by other
developers on their tasks. Various client analysis can be en-
abled by DeCAF, such as task prioritization, early conflict
detection, and testing advice among others. DeCAF enables
the user to specify a bound around the parts of the code base
to analyze, and the precision of the analysis, based on the
needs of the client analysis. The configuration options en-
able the impact analysis to provide meaningful results in a
timely manner.

Our initial evaluation plan for DeCAF is to assess its ef-
ficiency and effectiveness to support task prioritization and
conflict detection tasks. To generate the artifacts for our
evaluation, we have analyzed the git repositories for two
large open source projects to extract the commits. We are
using the commits as a proxy for tasks and will evaluate
DeCAF on its ability to identify task dependencies and po-
tential conflicts. We will also use the commits within a spe-
cific time period (1 to 2 weeks) as tasks and the associated
changes for the commits to analyze the impact of changes
post-hoc.

7. ACKNOWLEDGMENTS
This research is supported by grants AFSOR FA550-10-

1-0406 and NSF CCF-1253786 and HCC 1110916.

8. REFERENCES
[1] J. T. Biehl, M. Czerwinski, G. Smith, and G. G.

Robertson. FASTDash: a visual dashboard for
fostering awareness in software teams. In CHI, pages
1313–1322, 2007.

[2] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin.
Proactive detection of collaboration conflicts. In
ESEC/FSE, pages 168–178, 2011.

[3] P. Dewan and R. Hedge. Semi-Synchronous Conflict
Detection and Resolution in Asynchronous Software
Development. In European Conference on Computer
Supported Cooperative Work, pages 24–28, 2007.

[4] M. L. Guimarães and A. R. Silva. Improving early
detection of software merge conflicts. In Proceedings of
the 2012 International Conference on Software
Engineering, ICSE 2012, pages 342–352, Piscataway,
NJ, USA, 2012. IEEE Press.

[5] L. Hattori and M. Lanza. Syde: A tool for
collaborative software development. In ICSE, pages
235–238, 2010.

[6] M. Kersten and G. C. Murphy. Using task context to
improve programmer productivity. In FSE, pages
1–11, 2006.

[7] S. Person, G. Yang, N. Rungta, and S. Khurshid.
Directed incremental symbolic execution. In PLDI,
pages 504–515, 2011.

[8] N. Rungta, S. Person, and J. Branchaud. A change
impact analysis to characterize evolving program
behaviors. In ICSM, 2012.

[9] A. Sarma, D. Redmiles, and A. van der Hoek.
Palantir: Early detection of development conflicts
arising from parallel code changes, 2012.

[10] J. Wloka, B. G. Ryder, F. Tip, and X. Ren.
Safe-commit analysis to facilitate team software
development. In ICSE, pages 507–517. IEEE, 2009.

407

