
How to Evaluate a Conflict Minimizing Task
Scheduler through a User Study

Bakhtiar Khan Kasi and Anita Sarma
Computer Science and Engineering Department

University of Nebraska-Lincoln
Lincoln, NE, USA

{bkasi, asarma}@cse.unl.edu

Abstract—Workspace awareness tools facilitate coordination
among developers in a team by informing them of emerging
conflicts due to parallel development. Several such tools have
been introduced recently. However, evaluating such
(collaborative) tools through user studies is nontrivial because it
depends on the group dynamics and their development behavior.
In this paper, we present the challenges in evaluating a
collaboration tool geared towards minimizing conflicts by
scheduling (independent) development tasks. We present the
research questions that a user evaluation should answer along
with the foreseen challenges in answering these questions. We
would like to use the workshop to exchange opinions and
feedback to refine the design of our user study and start a
conversation on the challenges and methods for evaluating a
collaborative development tools.

Index Terms—Evaluation, user studies, task scheduling.

I. INTRODUCTION
Workspace awareness tools [1]–[3] have become popular in

the recent past as they are designed to facilitate development by
introducing new ways to improve task coordination, enabling
developers to identify and address a variety of software con-
flicts and coordination problems. However, empirically evalu-
ating the benefits of these tools is nontrivial and only few of
them have been evaluated from the perspective of user studies
e.g. Palantír [1], FASTDash [2] and CollabVS [4].

While evaluating a tool by deploying it in industry settings
is the gold standard, not all researchers have the required re-
sources to do so. Understandably, companies are hesitant to
experiment with new prototypes, especially those developed
externally. Another challenge with evaluating tools through
deployment is that, to be successful, collaborative tools require
the buy-in of the entire team, which is especially difficult.

Because of these challenges and the fact that deployment is
not the best strategy for performing feasibility study with initial
versions of prototypes, researchers often first test prototypes in
controlled lab settings. Results of which can later be general-
ized to industrial environments.

There are significant challenges in evaluating collaborative
tools in lab settings too [5]. The success of a collaboration tool
(even something as simple as an eclipse plugin embedded in a
developers work environment) depends among others, on de-
velopers’ skills, their experiences, and coordination with fellow
developers. These factors need to be simulated appropriately,
so as to make the experiment realistic.

To create such realistic experimental settings, the following
requirements need to be met. First, the prototype should be
available within the typical work context that a developer is
likely to use (e.g., a plugin within the Eclipse Platform). Se-
cond, the tool should be easily usable, without distracting de-
veloper from the main task at hand (e.g., coding or debugging).
Third, the experiment participants need to be experienced
enough not only in the environment (e.g., Eclipse) but also in
the domain (e.g., the programming language in which the tasks
are created) and the type of task (e.g., debugging vs. coding).
Fourth, experimental tasks have to be carefully formulated with
realistic complexity and rich design. Moreover, tasks needs to
simple enough to be completed in a short period of time within
a session.

Finally, in case of collaborative tools the team settings and
tasks for team members have to be simulated. For example, in
evaluating a collaboration tool, the evaluation scenario should
include users who are in different rooms, performing their indi-
vidual tasks and interacting with each other via the tool or other
communication protocols (e.g., chat sessions or emails). If the
goal is to study how an individual will use and react to the col-
laboration prototype, a confederate study design might be
needed to simulate these scenarios so that each individual is
evaluated in isolation to control for variances that might arise
because of variations in group interactions.

In this paper we identify challenges for evaluating collabo-
ration tools especially one that is geared towards minimizing
conflicts in teams. We then present the research questions that
we would like to answer when evaluating our prototype, Cas-
sandra, which is an optimized task scheduling, awareness tool
[6]. We provide here an initial plan for a user study to evaluate
Cassandra, however, our main goal is to use the workshop for
seeking feedback on the design of our user study.

The rest of the paper is organized as follows. Section II dis-
cusses our prototype Cassandra. In Section III, we present chal-
lenges and difficulties we faced in performing our previous
artifact-centered evaluation of Cassandra. We present evalua-
tion questions and our proposed evaluation in Section IV. We
conclude with our goals for the workshop in Section V.

II. CASSANDRA
 Cassandra is a novel task scheduling system that aims to

minimize conflicts by recommending task orders that restrict
dependent tasks or tasks that share common files from being

978-1-4673-6433-1/13/$31.00 c© 2013 IEEE USER 2013, San Francisco, CA, USA9

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:25:59 UTC from IEEE Xplore. Restrictions apply.

concurrently edited [6]. Cassandra enables a proactive conflict
minimization technique by identifying potential conflicts be-
tween tasks if they are performed in parallel, and consequently
recommends conflict-free tasks to developers. Cassandra opti-
mizes the solution space by comparing the task orders (if more
than one exists) to ordering desired by the developer (developer
preference) and selects the order that best matches the develop-
ers’ preferences.

We present the core functionality of Cassandra as follows:
Task context identification: Cassandra allows users to

create and arrange tasks as per their preference. The context
generator component is implemented in Eclipse development
environment as an extension to Mylyn’s plugin [7] and is re-
sponsible for tracking the development context of a task (the
files that are being currently edited or marked for future edits
by a developer). Currently, the user is required to identify the
task context a priori. In the future, an initial list of files that are
likely to be edited per task will be automatically generated
through mining past tasks and the files changed for that task.
The user would then be expected to refine this list through the
interface.

Task scheduling: Cassandra identifies and formalizes task
dependencies, task precedence, and developer preferences into
constraints. The constraints are then evaluated using the Z3
SMT solver [8] to identify “satisfiable” solutions. If a conflict
free solution is found, then it is optimized to match developer
preferences to the extent possible. If no solution exists, then
constraints are progressively relaxed until a solution is found.

Constraint reevaluation: Cassandra reevaluates the con-
straint space periodically to ensure that the satisfiability of the
solution is up-to-date. If new constraints are found the task
ordering can be updated for future tasks of a developer. The
fact that constraints are reevaluated periodically and that (fu-
ture) task order recommendations can be updated makes the
solution robust as it accounts for cases of non-precise predic-
tions. Cassandra reevaluates the constraints when a user has
completed the task and is checking in.

User interface: The user interface for Cassandra is imple-
mented as an extension to the task-list view of Mylyn (see Fig.
1). Users interact with the UI to prioritize tasks based on their
preferences, view the recommended task order and conflict
information for the tasks in their workspace.

Let us consider an example where Bob is interacting with
the Eclipse IDE at the beginning of his workday. Fig. 1 illus-

trates three different views of the task-list available to Bob.
Using the UI, he first creates three tasks and then orders them
(e.g. TB1, TB2 and TB3 in Fig. 1 (a)) as per his preference. Let
us assume that he also identifies the files that are going to be
changed for each task. Once the tasks have been identified and
organized, Cassandra (in the background) evaluates the con-
straints between Bob’s tasks and other tasks in the project,
identifying tasks that will face conflicts (annotated with warn-
ing symbols as shown in Fig. 1 (b)). Cassandra also shows the
recommended task sequence n (e.g., TB3…[1] means that TB3
should be performed first).

The user can also view additional information on the con-
flict by hovering over the warning symbol (as shown in (Fig 1.
c)). The conflict information provides details about which tasks
by which developers are potentially conflicting. In our example
(Fig. 1 (c)) Bob’s task TB1 has a “Direct Conflict” (same files
are likely to be edited in parallel) with Alice’s task TA1. Note
that there could be more than one conflict among tasks.

III. EVALUATION CHALLENGES
To test the feasibility of evaluating and solving constraints

among developer tasks in a project, we first conducted an arti-
fact-only study of Cassandra [6]. Here we briefly discuss the
study and the challenges we faced, as they have a bearing on
our future studies including user experiments.

Archival data analysis: We performed an empirical analy-
sis conducted on four open source projects hosted on GitHub
(Perl1, Storm2, Jenkins3, and Voldemort4); through historical
data gathered based on change set activity. We first quantified
the number of conflicts and their types (merge conflicts, build
failures, test failures) and determined the resolution efforts for
each conflict. We then used this data for evaluating the task-
scheduling component of Cassandra, to show the feasibility of
the scheduling technique. That is, we investigated change sets
per project on a weekly basis and identified alternate task or-
ders that would have avoided conflicts in that time frame.

While this archival process showed the existence of possi-
ble non-conflicting task orders for the project, we could not
retroactively integrate the change sets in the new task sequence.
This was because the change sets in the historical data, had

1http://www.perl.org
2http://storm-project.net 2http://storm-project.net
3http://jenkins-ci.org
4http://project-voldemort.com

Fig. 1. A mockup of Cassandra’s user interface. (a) The leftmost panel shows the task list with tasks in a user specified order. (b) The
middle panel shows tasks with conflicts as indicated by the warning icons and a recommended task ordering which is shown as [n]. (c)

The rightmost panel shows further details about a conflict that is visible via a mouse hover event

(a) (b) (c)

10

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:25:59 UTC from IEEE Xplore. Restrictions apply.

inherent functional dependencies and retrospectively changing
their order when integrating them into the master repository led
to a different set of conflicts. This limitation shows that in the
absence of additional information about functional dependen-
cies among change sets, retrospectively reordering and integrat-
ing them is infeasible.

Simulation based analysis: Since the projects that we
evaluated were open source (OSS) projects with limited
amount of parallel development, our data set only had limited
number of conflicts (e.g., the project Storm had 975 change
sets, out of which there were 17 merge conflicts, 9 build fail-
ures, and 13 test failures). To stress test our scheduling algo-
rithm and technique, we therefore simulated data to explore
situations with a higher number of constraints and conflicts.

The simulation data was generated by mutating one of the
four open source projects (Storm). We used this data to test
Cassandra’s efficiency with high numbers of constraints. How-
ever, it should be noted that the simulation generated mutants
of existing conflicts and cannot be generalized to all conflicts.

These experiments have shown the feasibility of a task
scheduler to identify optimum non-conflicting task orders.
However, these evaluations did not evaluate the UI, or whether
users would find the tool usable and act upon the recommenda-
tions, or whether users would take the time and effort to cre-
ate/refine the task context.

Our objective for future studies is to conduct an experi-
mental evaluation of Cassandra as an integrated system. Be-
cause our solution inherently relies on both the technological
functionality of Cassandra as well the human responses to the
information provided by the tool, our evaluation should focus
on this interplay [9].

IV. EXPERIMENT DESIGN
We plan to conduct user study within a university-based

environment to evaluate the effectiveness and efficiency of
Cassandra. The experiment has to simulate a team setting
where participants work in a team and where some of the tasks
are meant to conflict. We plan to compare, how using Cassan-
dra (in the Experimental group) allows fewer conflicts to occur
than not using it (Control group).

In order to appropriately evaluate Cassandra we would like
to answer the following research questions:

RQ1: Does using Cassandra allow users to avoid conflicts?
Here we would like to compare the number of conflicts

faced by the Experimental group to those faced by the Control
group. When seeding the conflicts in the tasks, we will use the
distribution of conflicts that we have found in the OSS projects.
We have to identify the number of conflicts and their types that
can be seeded in the experiment setting. For example, we can
only have (as many) tasks that the user can complete in a single
session (2 hours maximum) and not all tasks have to be con-
flicting. We also have to ensure that the resolution of the con-
flicts is not too complex, to avoid biasing the experiment in our
favor.

RQ2: How well do users understand the task recommenda-
tion and how often do they follow it?

This is a key question to answer. If users are able to under-
stand the recommendations and faithfully follow it then they
will not face any conflicts. We are interested in evaluating the
satisfaction and level of trust that users have on Cassandra.
However, given that this is an experimental setting, a threat to
validity is that users will be more likely to follow the tool rec-
ommendations. To make the experiment more realistic we
might have to include some false positives.

RQ3: What is the consequence of violating the recommend-
ed task sequence?

While Cassandra recommends the optimum task orders, it is
possible that a user may not follow the recommendation and
follow their preferred order. We would like to investigate, how
often a user violates the task sequence and under which cir-
cumstances. We could design a think-aloud experiment so that
we can gain insight into their actions at the different stages of
the experiment. More information on a particular behavior pat-
tern may be obtained through exit interviews.

RQ4: Does Cassandra affect the time-to-completion of
tasks by proactively identifying conflicts and avoiding them?

Conflict resolution requires coordination and delays the
time to complete a task, we would therefore like to see how
much of the time can be saved if conflicts could be avoided by
using Cassandra. However, note that Cassandra requires up-
front developer effort in identifying the files that are going to
be edited per task. We plan to evaluate how this upfront effort
compares to (saved) conflict resolution effort.

We will compare the time taken by participants in Control
and Experimental group to complete their tasks. As mentioned
earlier, in order to avoid biasing the experiment, we need to
ensure that conflict resolution is not overly expensive. This
exercise will also help quantify the differences in resolution
times for different types of conflict. Note, that it is possible that
participants in the Experimental group will face conflicts if
they do not follow the recommended task order.

A. Evaluation Challenges
When answering the above research questions within an

experimental study, we have to appropriately design the study
to control for the following threats to validity:

Individual differences: Individual difference among par-
ticipants can significantly affect the outcome of an experiment.
For example, the time it takes a user to complete a program-
ming task or resolve a conflict can vary widely depending on
their experiences. There are several options to reduce the ef-
fects of this problem. For example, we can perform a within-
subjects study design. However, given the fact that we would
like a user to complete several programming task it is unlikely
that we will be able to have a user participating in both treat-
ment groups without causing experimenter fatigue. Another
option is to use stratified random selection; that is users are
grouped into different strata based on their background from
which users are selected at random for each treatment.

It is possible that our participants do not have the experi-
ence of working in teams or the expertise in merging changes.
Further, resolving a build or test failure is nontrivial. In order to
minimize the impact of individual differences in development

11

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:25:59 UTC from IEEE Xplore. Restrictions apply.

expertise we might include both programming and non-
programming tasks. We will investigate the use of a text-based
task assignment, where dependencies across text files can be
simulated [8].

Designing the control group: Designing the experimental
setup for the Control group is probably the most challenging
task in tool evaluation. As mentioned earlier, it may be unjusti-
fied to compare the performance of subjects in the Experi-
mental group (that allows conflicts to be avoided) to those sole-
ly relying on their own skills and needing to resolve conflicts in
the Control group. In the absence of a similar scheduling tool
(that can be used as common baseline) the best we can do is
provide the Mylyn interface to the Control group.

Designing appropriate tasks: Designing tasks that are ap-
propriate for the evaluation is a major challenge. We want to
maintain a certain degree of complexity among tasks so they
are neither too trivial nor overly complex for the participants.
However, the actual tasks should also require some effort from
the participants so that the users primarily focus on the tasks
and not the scheduling part. The complexity of the conflicts
and their resolution similarly cannot be too complex.

Confederate design: A key technique that Cassandra uses to
identify conflict-free tasks is to identify constraints across pairs of
tasks so as to identify a sequence of tasks for each developer that
can be performed independently. In our example, Bob’s Task TB1
conflicts with Alice’s TA1, so they both cannot be performed in
parallel and the tool recommends Bob to work on TB3 instead.
However, if Alice were to work on TA2, which does not conflict
with TB1, Bob would be free to work on that task (TB1). There-
fore, the order in which each team member performs his/her task
impacts the task ordering proposed by Cassandra. Maintaining the
same order of tasks (and therefore a similar set of conflicts) across
different experiment runs will therefore be not possible, unless we
exert control over the sequence in which tasks are performed.

We are planning on evaluating one user at a time and simulate
a team and their actions through the use of confederates, research
personnel acting as virtual team member [9]. The confederates
will work as team members with their identity hidden from
other participants to mitigate any bias that a confederate may
develop. They will monitor the task ordering chosen by the
user and appropriately select their own tasks – leading to con-
flicting situations or vice versa.

The use of confederates will also be needed for the Control
group, where conflicts are supposed to occur if a user follows a
given task order. If we use real users to function as confeder-
ates, the rate at which each performs a task and their (own) task
preference might impact the incidence of conflicts (or a lack
thereof). To be able to compare both the groups, we need to
exert control over these parameters.

Think-aloud process: An important challenge in user ex-
periments is the ability to capture a collaboration situation in its
entirety. For example being able to provide a holistic view of
the situation or insight into what makes a participant behave in
a certain way and what are the factors that influence certain
decisions [10]. While performing a think-aloud study protocol
helps us to gain insight into participant behavior and motives, it
outlaws the analysis of times-to-completions as thinking aloud

needs cognitive effort and can hold up participant’s perfor-
mance. We plan to perform a small set of think-aloud experi-
ments and then rely on exit interviews to gain insight into par-
ticipant behavior.

V. WORKSHOP GOALS
Here we have presented our evaluation questions and the

challenges in evaluating our prototype, designed to minimize
conflicts in a team development scenario. The key challenge is
creating an experimental design where users in the Experi-
mental group can avoid conflicts by following the recommen-
dations through Cassandra, but not to heavily bias the experi-
ment towards its favor.

We would like to take the opportunity of the workshop to
get feedback and refine our design of the user study. We would
also like to identify additional risks in our study that we can
mitigate, before performing the study.

ACKNOWLEDGMENT
The work is partially funded by NSF grants: IIS-1253786

and CCF-1110916

REFERENCES
[1] A. Sarma, Z. Noroozi, and A. van der Hoek, “Palantír: Raising

Awareness among Configuration Management Workspaces,”
25th International Conference on Software Engineering, pp.
444–454, 2003.

[2] J. Biehl, M. Czerwinski, G. Smith, and G. Robertson,
“FASTDash: A Visual Dashboard for Fostering Awareness in
Software Teams,” SIGCHI Conference on Human Factors in
Computing Systems, pp. 1313–1322, 2007.

[3] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive
detection of collaboration conflicts,” 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations
of software engineering, pp. 168–178, 2011.

[4] P. Dewan and R. Hegde, “Semi-Synchronous Conflict
Detection and Resolution in Asynchronous Software
Development,” 2007 Tenth European Conference on
Computer-Supported Cooperative Work, pp. 159–178, 2007.

[5] O. Badreddin and T. C. Lethbridge, “Combining experiments
and grounded theory to evaluate a research prototype: Lessons
from the umple model-oriented programming technology,”
User Evaluation for Software Engineering Researchers, pp. 1–
4, 2012.

[6] B. K. Kasi and A. Sarma, “Cassandra: Proactive Conflict
Minimization through Optimized Task Scheduling,” 35th
International Conference on Software Engineering, in-press
See draft at http://interaction.unl.edu/cassandra/resources

[7] M. Kersten and G. C. Murphy, “Mylar: A Degree-of-Interest
Model for IDEs,” 4th International Conference on Aspect-
Oriented Software Development, pp. 159–168, 2005.

[8] L. De Moura and N. Bjørner, “Z3: An Efficient SMT Solver,”
Theory and Practice of Software, pp. 337–340, 2008.

[9] A. Sarma, D. Redmiles, and A. van der Hoek, “Palantír: Early
Detection of Development Conflicts Arising from Parallel
Code Changes,” IEEE Transactions on Software Engineering,
vol. 38, no. 4, pp. 889 –908, Aug. 2011.

[10] J. Schenk, “Evaluating awareness information in distributed
collaborative editing by software-engineers,” User Evaluation
for Software Engineering Researchers, pp. 35 –38, 2012.

12

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:25:59 UTC from IEEE Xplore. Restrictions apply.

